Skip to main content

Advertisement

Log in

TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 − TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer.

Methods

Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer.

Results

Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER −) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium−mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis.

Conclusions

We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lafourcade A et al (2018) Factors associated with breast cancer recurrences or mortality and dynamic prediction of death using history of cancer recurrences: the French E3N cohort. BMC Cancer 18(1):171

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alwan NAS et al (2017) Clinical and pathological characteristics of triple positive breast cancer among Iraqi patients. Gulf J Oncol 1(25):51–60

    Google Scholar 

  3. Benemei S et al (2015) TRP channels. Curr Opin Pharmacol 22:18–23

    Article  CAS  PubMed  Google Scholar 

  4. Bodding M (2007) TRP proteins and cancer. Cell Signal 19(3):617–624

    Article  PubMed  CAS  Google Scholar 

  5. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559(Pt 3):685–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belkacemi T et al (2017) TRPC1- and TRPC3-dependent Ca(2+) signaling in mouse cortical astrocytes affects injury-evoked astrogliosis in vivo. Glia 65(9):1535–1549

    Article  PubMed  PubMed Central  Google Scholar 

  7. Broker-Lai J et al (2017) Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J 36(18):2770–2789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dart C et al (1998) The dependence of Ag+ block of a potassium channel, murine kir2.1, on a cysteine residue in the selectivity filter. J Physiol 511(Pt 1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delmas P et al (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34(2):209–220

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich A, Fahlbusch M, Gudermann T (2014) Classical transient receptor potential 1 (TRPC1): channel or channel regulator? Cells 3(4):939–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smyth JT et al (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14(10):2337–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang GN et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  13. Rao JN et al (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290(4):G782–G792

    Article  CAS  PubMed  Google Scholar 

  14. Inkins WG, Estacion M, Schilling WP (1998) Functional expression of TrpC1: a human homologue of the Drosophila Trp channel. Biochem J 331(Pt 1):331–339

    Article  Google Scholar 

  15. Sours S et al (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Renal Physiol 290(6):F1507–F1515

    Article  CAS  PubMed  Google Scholar 

  16. Yuan JP et al (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789

    Article  CAS  PubMed  Google Scholar 

  17. Zitt C et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196

    Article  CAS  PubMed  Google Scholar 

  18. Kania E, Pajak B, Orzechowski A (2015) Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int 2015:352794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  20. Pettit EJ, Fay FS (1998) Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 78(4):949–967

    Article  CAS  PubMed  Google Scholar 

  21. Ge P et al (2018) TRPC1/3/6 inhibition attenuates the TGF-beta1-induced epithelial-mesenchymal transition in gastric cancer via the Ras/Raf1/ERK signaling pathway. Cell Biol Int 42(8):975–984

    Article  CAS  PubMed  Google Scholar 

  22. Davis FM et al (2012) Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS ONE 7(5):e36923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ouadid-Ahidouch H et al (2012) TRP calcium channel and breast cancer: expression, role and correlation with clinical parameters. Bull Cancer 99(6):655–664

    Article  CAS  PubMed  Google Scholar 

  24. Philip D, Poorvu M (2019) Prognostic impact of the 21-Gene Recurrence Score Assay Among Young Women With Node-Negative And Node-Positive ER-positive/ HER2-negative breast cancer. J Clin Oncol 38:725

    Google Scholar 

  25. Hammond ME et al (2010) American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6(4):195–197

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanna WM et al (2017) Comparative analysis of human epidermal growth factor receptor 2 testing in breast cancer according to 2007 and 2013 American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations. J Clin Oncol 35(26):3039–3045

    Article  CAS  PubMed  Google Scholar 

  27. Goldhirsch A et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azimi I et al (2017) TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells. J Cell Sci 130(14):2292–2305

    Article  CAS  PubMed  Google Scholar 

  29. Weber LV et al (2016) Expression and functionality of TRPV1 in breast cancer cells. Breast Cancer (Dove Med Press) 8:243–252

    CAS  Google Scholar 

  30. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278(31):29031–29040

    Article  CAS  PubMed  Google Scholar 

  31. Putney JW Jr et al (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114(Pt 12):2223–2229

    CAS  PubMed  Google Scholar 

  32. McCarl CA et al (2010) Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J Immunol 185(10):5845–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285(25):19173–19183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McAndrew D et al (2011) ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 10(3):448–460

    Article  CAS  PubMed  Google Scholar 

  35. Chen YF et al (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci USA 108(37):15225–15230

    Article  CAS  PubMed  Google Scholar 

  36. Li G et al (2013) Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. J Exp Clin Cancer Res 32:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Umemura M et al (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS ONE 9(2):e89292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang JY et al (2015) STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34(33):4358–4367

    Article  CAS  PubMed  Google Scholar 

  39. Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15(2):124–134

    Article  CAS  PubMed  Google Scholar 

  40. Li S et al (2019) Inhibition of MCF-7 breast cancer cell proliferation by a synthetic peptide derived from the C-terminal sequence of Orai channel. Biochem Biophys Res Commun 516(4):1066–1072

    Article  CAS  PubMed  Google Scholar 

  41. Perrouin Verbe MA et al (2016) Expression of store-operated channel components in prostate cancer: the prognostic paradox. Hum Pathol 49:77–82

    Article  PubMed  Google Scholar 

  42. Lee WH et al (2017) TRPV4 plays a role in breast cancer cell migration via Ca(2+)-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis 6(5):e338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work partly supported by the funds from National Natural Science Foundation of China [NO.81602345 (Yong-Qu Zhang)], Science and Technology Planning Project of Guangdong Province, China [NO.2016A020215145 (Xiao-Long Wei)], Science and Technology Planning Project of Shantou, China [NO.190917085269842 (Xiao-Long Wei)], Science and Technology Planning Project of Shantou, China [NO.(2019)62 (Yun-Zhu Zeng)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Long Wei or Li-Juan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The work was conducted in accordance with the Declaration of Helsinki. The study was approved by Medical Ethics Committee of the Cancer Hospital of Shantou University Medical College.

Informed consent

This article does not contain any studies with human participants or animals. The entire study protocol was approved by the Medical Ethical Committee of the Cancer Hospital of Shantou University Medical College. The need for obtaining informed consent was waived by this committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LY., Zhang, YQ., Zeng, YZ. et al. TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway. Breast Cancer Res Treat 182, 21–33 (2020). https://doi.org/10.1007/s10549-020-05673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05673-8

Keywords

Navigation