Skip to main content

Advertisement

Log in

Antimitotic chemotherapeutics promote adhesive responses in detached and circulating tumor cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In the clinical treatment of breast cancer, antimitotic cytotoxic agents are one of the most commonly employed chemotherapies, owing largely to their antiproliferative effects on the growth and survival of adherent cells in studies that model primary tumor growth. Importantly, the manner in which these chemotherapeutics impact the metastatic process remains unclear. Furthermore, since dissemination of tumor cells through the systemic circulation and lymphatics necessitates periods of detached survival, it is equally important to consider how circulating tumor cells respond to such compounds. To address this question, we exposed both nontumorigenic and tumor-derived epithelial cell lines to two antitumor compounds, jasplakinolide and paclitaxel (Taxol), in a series of attached and detached states. We report here that jasplakinolide promoted the extension of microtubule-based projections and microtentacle protrusions in adherent and suspended cells, respectively. These protrusions were specifically enriched by upregulation of a stable post-translationally modified form of α-tubulin, and this occurred prior to, and independently of any reductions in cellular viability. Microtubule stabilization with Taxol significantly enhanced these effects. Additionally, Taxol promoted the attachment and spreading of suspended tumor cell populations on extracellular matrix. While the antiproliferative effects of these compounds are well recognized and clinically valuable, our findings that microfilament and microtubule binding chemotherapeutics rapidly increase the mechanisms that promote endothelial adhesion of circulating tumor cells warrant caution to avoid inadvertently enhancing metastatic potential, while targeting cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

jas:

Jasplakinolide

McTN:

Microtentacle

tax:

Taxol

ECM:

Extracellular matrix

CTC:

Circulating tumor cell

F-actin:

Filamentous actin

PR:

Phenol red

Glu-tubulin:

Detyrosinated tubulin

References

  1. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458. doi:10.1038/nrc1886

    Article  CAS  PubMed  Google Scholar 

  2. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572. doi:10.1038/nrc865

    Article  CAS  PubMed  Google Scholar 

  3. Calderwood DA, Shattil SJ, Ginsberg MH (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 275:22607–22610. doi:10.1074/jbc.R900037199

    Article  CAS  PubMed  Google Scholar 

  4. Gupton SL, Gertler FB (2007) Filopodia: the fingers that do the walking. Sci STKE 2007:re5. doi:10.1126/stke.4002007re5

    Article  PubMed  Google Scholar 

  5. Weber K, Lazarides E, Goldman RD, Vogel A, Pollack R (1975) Localization and distribution of actin fibers in normal transformed and revertant cells. Cold Spring Harb Symp Quant Biol 39(Pt 1):363–369

    PubMed  Google Scholar 

  6. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130. doi:10.1016/S0955-0674(98)80095-1

    Article  CAS  PubMed  Google Scholar 

  7. Pellegrini F, Budman DR (2005) Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 23:264–273. doi:10.1081/CNV-200055970

    Article  CAS  PubMed  Google Scholar 

  8. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265. doi:10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  9. Tao W (2005) The mitotic checkpoint in cancer therapy. Cell Cycle 4:1495–1499

    CAS  PubMed  Google Scholar 

  10. Odaka C, Sanders ML, Crews P (2000) Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol 7:947–952. doi:10.1128/CDLI.7.6.947-952.2000

    CAS  PubMed  Google Scholar 

  11. Takeuchi H, Ara G, Sausville EA, Teicher B (1998) Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemother Pharmacol 42:491–496. doi:10.1007/s002800050850

    Article  CAS  PubMed  Google Scholar 

  12. Rao J, Li N (2004) Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets 4:345–354. doi:10.2174/1568009043332998

    Article  CAS  PubMed  Google Scholar 

  13. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275:5163–5170. doi:10.1074/jbc.275.7.5163

    Article  CAS  PubMed  Google Scholar 

  14. Cramer LP (1999) Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105. doi:10.1016/S0960-9822(99)80478-3

    Article  CAS  PubMed  Google Scholar 

  15. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565. doi:10.1073/pnas.77.3.1561

    Article  CAS  PubMed  Google Scholar 

  16. Camara O, Rengsberger M, Egbe A, Koch A, Gajda M, Hammer U, Jorke C, Rabenstein C, Untch M, Pachmann K (2007) The relevance of circulating epithelial tumor cells (CETC) for therapy monitoring during neoadjuvant (primary systemic) chemotherapy in breast cancer. Ann Oncol 18:1484–1492. doi:10.1093/annonc/mdm206

    Article  CAS  PubMed  Google Scholar 

  17. Piccart-Gebhart MJ, Burzykowski T, Buyse M, Sledge G, Carmichael J, Luck HJ, Mackey JR, Nabholtz JM, Paridaens R, Biganzoli L, Jassem J, Bontenbal M, Bonneterre J, Chan S, Basaran GA, Therasse P (2008) Taxanes alone or in combination with anthracyclines as first-line therapy of patients with metastatic breast cancer. J Clin Oncol 26:1980–1986. doi:10.1200/JCO.2007.10.8399

    Article  CAS  PubMed  Google Scholar 

  18. Whipple RA, Cheung AM, Martin SS (2007) Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp Cell Res 313:1326–1336. doi:10.1016/j.yexcr.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS (2008) Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 68:5678–5688. doi:10.1158/0008-5472.CAN-07-6589

    Article  CAS  PubMed  Google Scholar 

  20. Molnar B, Ladanyi A, Tanko L, Sreter L, Tulassay Z (2001) Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res 7:4080–4085

    CAS  PubMed  Google Scholar 

  21. Danowski BA (1989) Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93(Pt 2):255–266

    CAS  PubMed  Google Scholar 

  22. Kreitzer G, Liao G, Gundersen GG (1999) Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 10:1105–1118

    CAS  PubMed  Google Scholar 

  23. Mialhe A, Lafanechere L, Treilleux I, Peloux N, Dumontet C, Bremond A, Panh MH, Payan R, Wehland J, Margolis RL, Job D (2001) Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res 61:5024–5027

    CAS  PubMed  Google Scholar 

  24. Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206. doi:10.1023/B:BREA.0000004377.12288.3c

    Article  CAS  PubMed  Google Scholar 

  25. Korb T, Schluter K, Enns A, Spiegel HU, Senninger N, Nicolson GL, Haier J (2004) Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res 299:236–247. doi:10.1016/j.yexcr.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  26. Seipel K, O’Brien SP, Iannotti E, Medley QG, Streuli M (2001) Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J Cell Sci 114:389–399

    CAS  PubMed  Google Scholar 

  27. Woodring PJ, Litwack ED, O’Leary DD, Lucero GR, Wang JY, Hunter T (2002) Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol 156:879–892. doi:10.1083/jcb.200110014

    Article  CAS  PubMed  Google Scholar 

  28. Crown J, O’Leary M, Ooi WS (2004) Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9(Suppl 2):24–32. doi:10.1634/theoncologist.9-suppl_2-24

    Article  CAS  PubMed  Google Scholar 

  29. Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9:208. doi:10.1186/bcr1677

    Article  PubMed  Google Scholar 

  30. Pachmann K (2005) Longtime recirculating tumor cells in breast cancer patients. Clin Cancer Res 11:5657. doi:10.1158/1078-0432.CCR-05-0191 (author reply 5657–8)

    Article  PubMed  Google Scholar 

  31. Gralow J, Rugo H, Gradishar W, O’Shaughnessy JA, Jahanzeb M, Perez E, Tripathy D (2008) Novel taxane formulations in the treatment of breast cancer: a thought leader discussion and consensus roundtable. Clin Breast Cancer 8:33–37

    Article  CAS  PubMed  Google Scholar 

  32. Montgomery RB, Guzman J, O’Rourke DM, Stahl WL (2000) Expression of oncogenic epidermal growth factor receptor family kinases induces paclitaxel resistance and alters beta-tubulin isotype expression. J Biol Chem 275:17358–17363. doi:10.1074/jbc.M000966200

    Article  CAS  PubMed  Google Scholar 

  33. Martin SS, Ridgeway AG, Pinkas J, Lu Y, Reginato MJ, Koh EY, Michelman M, Daley GQ, Brugge JS, Leder P (2004) A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth. Oncogene 23:4641–4645. doi:10.1038/sj.onc.1207595

    Article  CAS  PubMed  Google Scholar 

  34. Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23:9479–9490

    CAS  PubMed  Google Scholar 

  35. Infante AS, Stein MS, Zhai Y, Borisy GG, Gundersen GG (2000) Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 113(Pt 22):3907–3919

    CAS  PubMed  Google Scholar 

  36. Garber K (2008) Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst 100:232–233 239

    Article  PubMed  Google Scholar 

  37. Friedman E, Verderame M, Lipkin M, Pollack R (1985) Altered actin cytoskeletal patterns in two premalignant stages in human colon carcinoma development. Cancer Res 45:3236–3242

    CAS  PubMed  Google Scholar 

  38. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi:10.1529/biophysj.104.045476

    Article  CAS  PubMed  Google Scholar 

  39. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732. doi:10.1158/0008-5472.CAN-08-4073

    Article  CAS  PubMed  Google Scholar 

  40. Janmey PA (1991) Mechanical properties of cytoskeletal polymers. Curr Opin Cell Biol 3:4–11. doi:10.1016/0955-0674(91)90159-V

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart S. Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balzer, E.M., Whipple, R.A., Cho, E.H. et al. Antimitotic chemotherapeutics promote adhesive responses in detached and circulating tumor cells. Breast Cancer Res Treat 121, 65–78 (2010). https://doi.org/10.1007/s10549-009-0457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0457-3

Keywords

Navigation