Skip to main content

Advertisement

Log in

Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21

Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is the most commonly diagnosed malignancy in women worldwide. Metastatic development is associated with poor prognosis and current therapies provide only limited success. Virotherapy is an emerging strategy for the treatment of cancer that utilizes both replication-competent and genetically modified viruses to selectively kill tumor cells. We have previously shown that Coxsackievirus A21 (CVA21), a wild-type common-cold producing enterovirus, is an effective oncolytic agent against human melanoma xenografts in vivo. CVA21 specifically targets and lytically infects susceptible cells expressing the CVA21 cellular receptors, intercellular adhesion molecule-1 (ICAM-1) and/or decay-accelerating factor (DAF). Herein, the efficacy of CVA21 as a therapeutic agent against human breast cancer was investigated both in vitro and in vivo. Flow cytometric analysis revealed that the human breast cancer cell lines examined expressed significantly elevated levels of surface ICAM-1 and DAF compared to normal breast cell lines, and that all cancerous lines were more susceptible to lytic infection by CVA21 than the normal cells. Through the use of subcutaneous (T47D cells) and orthotopic (MDA-MB-231-luc cells) xenograft SCID mouse models it was demonstrated that a single intravenous injection of CVA21 produced significant regression of pre-established tumors in vivo, as well as targeting and elimination of metastases in the orthotopic model. Taken together, these findings highlight the exciting potential of CVA21 as a therapeutic agent against both primary and metastatic human breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD et al (1996) Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 14:2197–2205

    PubMed  CAS  Google Scholar 

  3. Hirasawa K, Nishikawa SG, Norman KL, Alain T et al (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62:1696–1701

    PubMed  CAS  Google Scholar 

  4. Pecora AL, Rizvi N, Cohen GI, Meropol NJ et al (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20:2251–2266

    Article  PubMed  CAS  Google Scholar 

  5. Stojdl DF, Lichty B, Knowles S, Marius R et al (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6:821–825

    Article  PubMed  CAS  Google Scholar 

  6. Buckland FE, Bynoe ML, Tyrrell DA (1965) Experiments on the spread of colds. II. Studies in volunteers with Coxsackievirus A21. J Hyg (Lond) 63:327–343

    CAS  Google Scholar 

  7. Couch RB, Cate TR, Gerone PJ, Fleet WF et al (1965) Production of illness with a small-particle aerosol of Coxsackie A21. J Clin Invest 44:535–542

    Article  PubMed  CAS  Google Scholar 

  8. Spickard A, Evans H, Knight V, Johnson K (1963) Acute respiratory disease in normal volunteers associated with Coxsackie A-21 viral infection. III. Response to nasopharyngeal and enteric inoculation. J Clin Invest 42:840–852

    Article  PubMed  CAS  Google Scholar 

  9. Pathmanathan S, Krishna MT, Blomberg A, Helleday R et al (2003) Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occup Environ Med 60:892–896

    Article  PubMed  CAS  Google Scholar 

  10. Bianco A, Whiteman SC, Sethi SK, Allen JT et al (2000) Expression of intercellular adhesion molecule-1 (ICAM-1) in nasal epithelial cells of atopic subjects: a mechanism for increased rhinovirus infection? Clin Exp Immunol 121:339–345

    Article  PubMed  CAS  Google Scholar 

  11. Shafren DR, Dorahy DJ, Greive SJ, Burns GF et al (1997) Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by Coxsackievirus A21. J Virol 71:785–789

    PubMed  CAS  Google Scholar 

  12. Shafren DR, Dorahy DJ, Ingham RA, Burns GF et al (1997) Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol 71:4736–4743

    PubMed  CAS  Google Scholar 

  13. Newcombe NG, Beagley LG, Christiansen D, Loveland BE et al (2004) Novel role for decay-accelerating factor in Coxsackievirus A21-mediated cell infectivity. J Virol 78:12677–12682

    Article  PubMed  CAS  Google Scholar 

  14. Au GG, Lindberg AM, Barry RD, Shafren DR (2005) Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol 26:1471–1476

    PubMed  CAS  Google Scholar 

  15. Shafren DR, Au GG, Nguyen T, Newcombe NG et al (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, Coxsackievirus A21. Clin Cancer Res 10:53–60

    Article  PubMed  CAS  Google Scholar 

  16. Au GG, Lincz LF, Enno A, Shafren DR (2007) Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol 137:133–141

    Article  PubMed  CAS  Google Scholar 

  17. Regidor PA, Callies R, Regidor M, Schindler AE (1998) Expression of the cell adhesion molecules ICAM-1 and VCAM-1 in the cytosol of breast cancer tissue, benign breast tissue and corresponding sera. Eur J Gynaecol Oncol 19:377–383

    PubMed  CAS  Google Scholar 

  18. Rosette C, Roth RB, Oeth P, Braun A et al (2005) Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 26:943–950

    Article  PubMed  CAS  Google Scholar 

  19. Madjd Z, Durrant LG, Bradley R, Spendlove I et al (2004) Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res 10:2797–2803

    Article  PubMed  CAS  Google Scholar 

  20. Lublin DM, Atkinson JP (1989) Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol 7:35–58

    Article  PubMed  CAS  Google Scholar 

  21. Shafren DR, Bates RC, Agrez MV, Herd RL et al (1995) Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol 69:3873–3877

    PubMed  CAS  Google Scholar 

  22. Coyne KE, Hall SE, Thompson S, Arce MA et al (1992) Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol 149:2906–2913

    PubMed  CAS  Google Scholar 

  23. Boyd AW, Wawryk SO, Burns GF, Fecondo JV (1988) Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell–cell contact-mediated immune mechanisms. Proc Natl Acad Sci USA 85:3095–3099

    Article  PubMed  CAS  Google Scholar 

  24. Dougherty RM (1964) Animal virus titration techniques. In: Harris RJC (ed) Techniques in experimental virology. Academic Press, New York

    Google Scholar 

  25. Mullen JT, Tanabe KK (2002) Viral oncolysis. Oncologist 7:106–119

    Article  PubMed  CAS  Google Scholar 

  26. Shafren DR (1998) Viral cell entry induced by cross-linked decay-accelerating factor. J Virol 72:9407–9412

    PubMed  CAS  Google Scholar 

  27. Stuart AD, Eustace HE, McKee TA, Brown TD (2002) A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J Virol 76:9307–9322

    Article  PubMed  CAS  Google Scholar 

  28. Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79:1–23

    Article  PubMed  CAS  Google Scholar 

  29. Carrick S, Ghersi D, Wilcken N, Simes J (2004) Platinum containing regimens for metastatic breast cancer. Cochrane Database Syst Rev CD003374

  30. Sampath D, Discafani CM, Loganzo F, Beyer C et al (2003) MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol Cancer Ther 2:873–884

    PubMed  CAS  Google Scholar 

  31. Sulkin SE, Schwab M, Wallis HC (1951) Isolation of Coxsackie viruses; litter differences among suckling mice. Proc Soc Exp Biol Med 77:354–356

    PubMed  CAS  Google Scholar 

  32. Ciugarin-Brailoiu M (1975) Variations in Coxsackie virus pathogenicity in the course of routine isolations in suckling mice and cell cultures. Virologie 26:81–86

    PubMed  CAS  Google Scholar 

  33. Mufson MA, Kawana R, Bloom HH, Gorstein F et al (1968) Pathogenicity of Coxsackie A-21 virus for suckling mice. Proc Soc Exp Biol Med 128:237–246

    PubMed  CAS  Google Scholar 

  34. Fisher K (2006) Striking out at disseminated metastases: the systemic delivery of oncolytic viruses. Curr Opin Mol Ther 8:301–313

    PubMed  CAS  Google Scholar 

  35. Fu X, Zhang X (2002) Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 62:2306–2312

    PubMed  CAS  Google Scholar 

  36. Zhang JF, Hu C, Geng Y, Selm J et al (1996) Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA 93:4513–4518

    Article  PubMed  CAS  Google Scholar 

  37. Norman KL, Coffey MC, Hirasawa K, Demetrick DJ et al (2002) Reovirus oncolysis of human breast cancer. Hum Gene Ther 13:641–652

    Article  PubMed  CAS  Google Scholar 

  38. Fernandez M, Porosnicu M, Markovic D, Barber GN (2002) Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 76:895–904

    Article  PubMed  CAS  Google Scholar 

  39. Magee WE, Miller OV (1970) Individual variability in antibody response of human volunteers to infection of the upper respiratory tract by Coxsackie A21 virus. J Infect Dis 122:127–138

    PubMed  CAS  Google Scholar 

  40. Patel N, Buthala DA, Walker JS (1964) Controlled studies of Coxsackie a-21 (Coe) virus in volunteers. J Infect Dis 114:87–94

    PubMed  CAS  Google Scholar 

  41. Pereira MS, Pereira HG (1959) Coe virus properties and prevalence in Great Britain. Lancet 2:539–541

    Article  Google Scholar 

  42. Nwanegbo E, Vardas E, Gao W, Whittle H et al (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11:351–357

    Article  PubMed  CAS  Google Scholar 

  43. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM et al (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973

    Article  PubMed  CAS  Google Scholar 

  44. Selb B, Weber B (1994) A study of human reovirus IgG and IgA antibodies by ELISA and western blot. J Virol Methods 47:15–25

    Article  PubMed  CAS  Google Scholar 

  45. Tai JH, Williams JV, Edwards KM, Wright PF et al (2005) Prevalence of reovirus-specific antibodies in young children in Nashville, Tennessee. J Infect Dis 191:1221–1224

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge those investigators mentioned in the text for the provision of monoclonal antibodies, cell lines and virus that enabled this study to be undertaken. We would like to thank Dr Gough Au, Dr Susanne Johansson, Linda Berry, Catherine Delahunty, Erin Haley, and Debbie Pepperall for scientific advice and technical assistance throughout this project. Funding for this work was derived from grants received from the Biotechnology Innovation Fund, Hunter Medical Research Institute, and Viralytics Ltd. Kathryn Skelding is a National Breast Cancer Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R. Shafren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skelding, K.A., Barry, R.D. & Shafren, D.R. Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res Treat 113, 21–30 (2009). https://doi.org/10.1007/s10549-008-9899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9899-2

Keywords

Navigation