Skip to main content

Advertisement

Log in

The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Upregulation of functional voltage-gated Na+ channels (VGSCs) occurs in metastatic human breast cancer (BCa) in vitro and in vivo. The present study aimed to ascertain the specific involvement of the ‘neonatal’ splice variant of Nav1.5 (nNav1.5), thought to be predominant, in the VGSC-dependent invasive behaviour of MDA-MB-231 cells. Functional activity of nNav1.5 was suppressed by two different methods targeting nNav1.5: (i) small interfering RNA (siRNA), and (ii) a polyclonal antibody (NESO-pAb); effects upon migration and invasion were determined. nNav1.5 mRNA, protein and signalling were measured using real-time PCR, Western blotting, and patch clamp recording, respectively. Treatment with the siRNA rapidly reduced (by ∼90%) the level of nNav1.5 (but not adult Nav1.5) mRNA, but the protein reduction was much smaller (∼30%), even after 13 days. Nevertheless, the siRNA reduced peak VGSC current density by 33%, and significantly increased the cells’ sensitivity to nanomolar tetrodotoxin (TTX). Importantly, the siRNA suppressed in vitro migration by 43%, and eliminated the normally inhibitory effect of TTX. Migrated MDA-MB-231 cells expressed more nNav1.5 protein at the plasma membrane than non-migrated cells. Furthermore, NESO-pAb reduced migration by up to 42%, in a dose-dependent manner. NESO-pAb also reduced Matrigel invasion without affecting proliferation. TTX had no effect on cells already treated with NESO-pAb. It was concluded that nNav1.5 is primarily responsible for the VGSC-dependent enhancement of invasive behaviour in MDA-MB-231 cells. Accordingly, targeting nNav1.5 expression/activity may be useful in clinical management of metastatic BCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Associates Inc., Sunderland (Massachusetts)

    Google Scholar 

  2. Jurkat-Rott K, Lehmann-Horn F (2001) Human muscle voltage-gated ion channels and hereditary disease. Curr Opin Pharmacol 1(3):280–287

    Article  PubMed  Google Scholar 

  3. Viswanathan PC, Balser JR (2004) Inherited sodium channelopathies: a continuum of channel dysfunction. Trends Cardiovasc Med 14(1):28–35

    Article  PubMed  Google Scholar 

  4. Diss JK, Fraser SP, Djamgoz MB (2004) Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 33(3):180–193

    Article  PubMed  Google Scholar 

  5. Fraser SP, Koyuturk M, Djamgoz MB (2002) Ion channel activity and cancer cell proliferation: a short review with particular reference to prostate cancer. In: Rouzaire-Dubois B, Benoit E, Dubois JM (eds) Ion channels and physiopathologies of nerve conduction and cell proliferation, 1st edn. Research Signpost

  6. Fraser SP, Diss JK, Chioni AM et al (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11:5381–5389

    Article  PubMed  Google Scholar 

  7. Laniado ME, Lalani EN, Fraser SP et al (1997) Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 150(4):1213–1221

    PubMed  Google Scholar 

  8. Fraser SP, Diss JK, Lloyd LJ et al (2004) T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEBS Lett 569(1–3):191–194

    Article  PubMed  Google Scholar 

  9. Blandino JK, Viglione MP, Bradley WA et al (1995) Voltage-dependent sodium channels in human small-cell lung cancer cells: role in action potentials and inhibition by Lambert-Eaton syndrome IgG. J Membr Biol 143(2):153–163

    PubMed  Google Scholar 

  10. Onganer PU, Djamgoz MB (2005) Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na+ channel expression in vitro. J Membr Biol 204(2):67–75

    Article  PubMed  Google Scholar 

  11. Ou SW, Kameyama A, Hao LY et al (2005) Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A. Eur J Neurosci 22(4):793–801

    Article  PubMed  Google Scholar 

  12. Allen DH, Lepple-Wienhues A, Cahalan MD (1997) Ion channel phenotype of melanoma cell lines. J Membr Biol 155(1):27–34

    Article  PubMed  Google Scholar 

  13. Abdul M, Hoosein N (2002) Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res 22(3):1727–1730

    PubMed  Google Scholar 

  14. Onganer PU, Seckl MJ, Djamgoz MB (2005) Neuronal characteristics of small-cell lung cancer. Br J Cancer 93:1197–1201

    Article  PubMed  Google Scholar 

  15. Diss JK, Stewart D, Pani F et al (2005) A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 8(3):266–273

    Article  PubMed  Google Scholar 

  16. Fidler IJ (2003) Timeline: the pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  Google Scholar 

  17. Grimes JA, Fraser SP, Stephens GJ et al (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 369(2–3):290–294

    Article  PubMed  Google Scholar 

  18. Djamgoz MBA, Mycielska M, Madeja Z et al (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage gated Na+ channel activity. J Cell Sci 114(Pt 14):2697–2705

    PubMed  Google Scholar 

  19. Mycielska ME, Fraser SP, Szatkowski M et al (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 195(3):461–469

    Article  PubMed  Google Scholar 

  20. Bennett ES, Smith BA, Harper JM (2004) Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 447(6):908–914

    Article  PubMed  Google Scholar 

  21. Smith P, Rhodes NP, Shortland AP et al (1998) Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 423(1):19–24

    Article  PubMed  Google Scholar 

  22. Roger S, Besson P, Le Guennec JY (2003) Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta 1616(2):107–111

    Article  PubMed  Google Scholar 

  23. Fraser SP, Ding Y, Liu A et al (1999) Tetrodotoxin suppresses morphological enhancement of the metastatic MAT-LyLu rat prostate cancer cell line. Cell Tissue Res 295(3):505–512

    Article  PubMed  Google Scholar 

  24. Krasowska M, Grzywna ZJ, Mycielska ME et al (2004) Patterning of endocytic vesicles and its control by voltage-gated Na+ channel activity in rat prostate cancer cells: fractal analyses. Eur Biophys J 33(6):535–542

    Article  PubMed  Google Scholar 

  25. Fraser SP, Salvador V, Manning EA et al (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. lateral motility. J Cell Physiol 195(3):479–487

    Article  PubMed  Google Scholar 

  26. Mycielska ME, Palmer CP, Brackenbury WJ et al (2005) Expression of Na+-dependent citrate transport in a strongly metastatic human prostate cancer PC-3M cell line: regulation by voltage-gated Na+ channel activity. J Physiol 563(Pt 2):393–408

    Article  PubMed  Google Scholar 

  27. Anderson JD, Hansen TP, Lenkowski PW et al (2003) Voltage-gated sodium channel blockers as cytostatic inhibitors of the androgen-independent prostate cancer cell line PC-3. Mol Cancer Ther 2(11):1149–1154

    PubMed  Google Scholar 

  28. Abdul M, Hoosein N (2001) Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells. Anticancer Res 21(3B):2045–2048

    PubMed  Google Scholar 

  29. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26(1):13–25

    Article  PubMed  Google Scholar 

  30. Copley RR (2004) Evolutionary convergence of alternative splicing in ion channels. Trends Genet 20(4):171–176

    Article  PubMed  Google Scholar 

  31. Chioni AM, Fraser SP, Pani F et al (2005) A novel polyclonal antibody specific for the Na(v)1.5 voltage-gated Na+ channel ‘neonatal’ splice form. J Neurosci Methods 147(2):88–98

    Article  PubMed  Google Scholar 

  32. Brackenbury WJ, Chioni AM, Djamgoz MB (2005) Further evidence for the neonatal splice variant of Nav1.5 potentiating in vitro metastatic behaviour of MDA-MB-231 human breast cancer cells: application of RNAi and a novel antibody. J Physiol 568P:PC17

    Google Scholar 

  33. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  Google Scholar 

  34. Diss JK, Archer SN, Hirano J et al (2001) Expression profiles of voltage-gated Na+ channel alpha-subunit genes in rat and human prostate cancer cell lines. Prostate 48(3):165–178

    Article  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  Google Scholar 

  36. Okuse K, Malik-Hall M, Baker MD et al (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417(6889):653–656

    Article  PubMed  Google Scholar 

  37. Shah BS, Rush AM, Liu S et al (2004) Contactin associates with sodium channel Nav1.3 in native tissues and increases channel density at the cell surface. J Neurosci 24(33):7387–7399

    Article  PubMed  Google Scholar 

  38. Brackenbury WJ, Djamgoz MB (2006) Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol DOI: 10.1113/jphysiol.2006.106906

  39. Grimes JA, Djamgoz MB (1998) Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 175(1):50–58

    Article  PubMed  Google Scholar 

  40. Ding Y, Djamgoz MB (2004) Serum concentration modifies amplitude and kinetics of voltage-gated Na+ current in the Mat-LyLu cell line of rat prostate cancer. Int J Biochem Cell Biol 36(7):1249–1260

    Article  PubMed  Google Scholar 

  41. Haufe V, Camacho JA, Dumaine R et al (2005) Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart. J Physiol 564 (Pt 3):683–696

    Article  PubMed  Google Scholar 

  42. Gurney AM, Hunter E (2005) The use of small interfering RNA to elucidate the activity and function of ion channel genes in an intact tissue. J Pharmacol Toxicol Methods 51(3):253–262

    Article  PubMed  Google Scholar 

  43. Rieckhof GE, Yoshihara M, Guan Z et al (2003) Presynaptic N-type calcium channels regulate synaptic growth. J Biol Chem 278(42):41099–41108

    Article  PubMed  Google Scholar 

  44. McCrossan ZA, Lewis A, Panaghie G et al (2003) MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J Neurosci 23(22):8077–8091

    PubMed  Google Scholar 

  45. Mikami M, Yang J (2005) Short hairpin RNA-mediated selective knockdown of Nav1.8 tetrodotoxin-resistant voltage-gated sodium channel in dorsal root ganglion neurons. Anesthesiology 103(4):828–836

    Article  PubMed  Google Scholar 

  46. Xu X, Shrager P (2005) Dependence of axon initial segment formation on Na+ channel expression. J Neurosci Res 79(4):428–441

    Article  PubMed  Google Scholar 

  47. Editorial (2003) Whither RNAi? Nat Cell Biol 5(6):489–490

  48. Couzin J (2004) Molecular biology. RNAi shows cracks in its armor. Science 306(5699):1124–1125

    Article  PubMed  Google Scholar 

  49. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637

    Article  PubMed  Google Scholar 

  50. Li T, Chang CY, Jin DY et al (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544

    Article  PubMed  Google Scholar 

  51. Zhang W, Lane RD, Mellgren RL (1996) The major calpain isozymes are long-lived proteins. Design of an antisense strategy for calpain depletion in cultured cells. J Biol Chem 271(31):18825–18830

    Article  PubMed  Google Scholar 

  52. Alao JP, Lam EW, Ali S et al (2004) Histone deacetylase inhibitor trichostatin A represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10(23):8094–8104

    Article  PubMed  Google Scholar 

  53. Waechter CJ, Schmidt JW, Catterall WA (1983) Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem 258(8):5117–5123

    PubMed  Google Scholar 

  54. Sherman SJ, Chrivia J, Catterall WA (1985) Cyclic adenosine 3′:5′-monophosphate and cytosolic calcium exert opposing effects on biosynthesis of tetrodotoxin-sensitive sodium channels in rat muscle cells. J Neurosci 5(6):1570–1576

    PubMed  Google Scholar 

  55. Rola R, Szulczyk B, Szulczyk P et al (2002) Expression and kinetic properties of Na+ currents in rat cardiac dorsal root ganglion neurons. Brain Res 947(1):67–77

    Article  PubMed  Google Scholar 

  56. Yoshida S (1994) Tetrodotoxin-resistant sodium channels. Cell Mol Neurobiol 14(3):227–244

    Article  PubMed  Google Scholar 

  57. Fahmi AI, Patel M, Stevens EB et al (2001) The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol 537(Pt 3):693–700

    Article  PubMed  Google Scholar 

  58. Xiao YF, Wright SN, Wang GK et al (2000) Coexpression with beta(1)-subunit modifies the kinetics and fatty acid block of hH1(alpha) Na+ channels. Am J Physiol Heart Circ Physiol 279(1):H35–H46

    PubMed  Google Scholar 

  59. Yu EJ, Ko SH, Lenkowski PW et al (2005) Distinct domains of the sodium channel beta3 subunit modulate channel gating kinetics and sub-cellular location. Biochem J 392(Pt 3):519–526

    Article  PubMed  Google Scholar 

  60. Monk M, Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20(56):8085–8091

    Article  PubMed  Google Scholar 

  61. Rye PD, Stigbrand T (2004) Interfering with cancer: a brief outline of advances in RNA interference in oncology. Tumour Biol 25(5–6):329–336

    Article  PubMed  Google Scholar 

  62. Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579(26):5996–6007

    Article  PubMed  Google Scholar 

  63. Karagiannis TC, El-Osta A (2005) RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 12(10):787–795

    Article  PubMed  Google Scholar 

  64. Willems A, Gauger K, Henrichs C et al (2005) Antibody therapy for breast cancer. Anticancer Res 25(3A):1483–1489

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. J.P. Alao and Prof R.C. Coombes for advice on design of initial RNAi experiments. This study was supported by the Pro Cancer Research Fund (PCRF) and the Bunzl plc - PCRF Programme in Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa B. A. Djamgoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackenbury, W.J., Chioni, AM., Diss, J.K.J. et al. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 101, 149–160 (2007). https://doi.org/10.1007/s10549-006-9281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9281-1

Keywords

Navigation