Skip to main content

Advertisement

Log in

Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

We have previously demonstrated that oestrogen receptor α (ERα) modulates epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) signalling efficiency in a tamoxifen-resistant MCF-7 breast cancer cell line (Tam-R). In the present study we have investigated whether this cross-talk between EGFR/MAPK and ERα signalling pathways is bidirectional by examining the effects of EGFR/MAPK activity on ER functionality in the same cell line. Elevated expression levels of phosphorylated serine 118 (S118) ERα were observed in the Tam-R compared to the parental wild type MCF-7 cell line (WT-MCF-7) under basal growth conditions. Phosphorylation of ERα at S118 was regulated by the EGFR/MAPK pathway in Tam-R cells being increased in response to amphiregulin (AR) and inhibited by the selective EGFR tyrosine kinase inhibitor, gefitinib and the MEK1/2 inhibitor, PD184352. Recruitment of the co-activators p68 RNA helicase and SRC1 to ERα, oestrogen response element (ERE) activity and Tam-R cell growth were similarly EGFR/MAPK-regulated. Chromatin immunoprecipitation (ChIP) studies revealed that in Tam-R cells the ERα assembled on the AR gene promoter and this was associated with elevated basal expression of AR mRNA. Furthermore, AR mRNA expression was under the regulation of the EGFR/MAPK and ERα signalling pathways. Neutralising antibodies to AR inhibited EGFR/ERK1/2 activity, reduced S118 ERα phosphorylation and reduced AR mRNA expression in TAM-R cells. These findings suggest that ERα function in Tam-R cells is maintained as a consequence of EGFR/MAPK-mediated phosphorylation at serine residue 118 resulting in the generation of a self-propogating autocrine growth-regulatory loop through the ERα-mediated production of AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JM, Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors in combination Clin Cancer Res10:346S–354S, 2004

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson RI, Hutcheson IR, Britton D, Knowlden JM, Jones HE, Harper ME, Hiscox SE, Barrow D, Gee JM, Growth factor signalling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies J Steroid Biochem Mol Biol93: 257–262, 2005

    Article  PubMed  CAS  Google Scholar 

  3. Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, Harris AL, Horne CH, Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer Br J Cancer 65: 118–121, 1992

    PubMed  CAS  Google Scholar 

  4. Nicholson RI, McClelland RA, Finlay P, Eaton CL, Gullick WJ, Dixon AR, Robertson JF, Ellis IO, Blamey RW, Relationship between EGF-R, c-erbB2 protein expression and Ki67 immunostaining in breast cancer and hormone sensitivity Eur J Cancer29A: 1018–1023, 1993

    Article  PubMed  CAS  Google Scholar 

  5. Nicholson RI, McClelland RA, Gee JMW, Manning DL, Cannon P, Robertson JF, Ellis IO, Blamey RW, Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy Breast Cancer Res Treat29: 117–125, 1994a

    Article  CAS  Google Scholar 

  6. Long B, McKibben BM, Lynch M, van den Berg HW, Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-1 human breast cancer cell line Br J Cancer65: 865–869, 1992

    PubMed  CAS  Google Scholar 

  7. El-Zarruk AA, van den Berg HW, The anti-proliferative effects of tyrosine kinase inhibitors towards tamoxifen-sensitive and tamoxifen-resistant human breast cancer cell lines in relation to the expression of epidermal growth factor receptors (EGF-R) and the inhibition of EGF-R tyrosine kinase Cancer Lett142: 185–193, 1999

    Article  PubMed  CAS  Google Scholar 

  8. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI, Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells Endocrinol144: 1032–1044, 2003

    Article  CAS  Google Scholar 

  9. van Agthoven TT, van Agthoven TL, Portengen H, Foekens JA, Dorssers LC, Ectopic expression of epidermal growth factor receptors induces hormone independence in ZR-75-1 human breast cancer cells Cancer Res52: 5082–5088, 1992

    PubMed  Google Scholar 

  10. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK, Estrogen-dependent tamoxifen-resistant tumorigenic growth of MCF7 cells transfected with HER2/neu Breast Cancer Res Treat24: 85–95, 1992

    Article  PubMed  CAS  Google Scholar 

  11. Miller DL, El-Ashry D, Cheville AL, Liu Y, McLeskey SW, Kern FG, Emergence of MCF7 cells overexpressing a transfected epidermal growth factor receptor (EGFR) under estrogen-depleted conditions: evidence for a role of EGFR in breast cancer growth and progression Cell Growth Diff5: 1263–1274, 1994

    PubMed  CAS  Google Scholar 

  12. Liu Y, El-Ashry D, Chen D, Ding IY, Kern FG, MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivoBreast Cancer Res Treat34: 97–117, 1995

    Article  PubMed  CAS  Google Scholar 

  13. Kurokawa H, Lenferink AEG, Simpson JF, Piscane PI, Sliwkowski MX, Forbes JT, Arteaga CL, Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cellsCancer Res60: 5887–5894, 2000

    PubMed  CAS  Google Scholar 

  14. Schlessinger J, Cell signaling by receptor tyrosine kinasesCell103: 211–225, 2000

    Article  PubMed  CAS  Google Scholar 

  15. Coutts AS, Murphy LC, Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cellsCancer Res58: 4071–4074, 1998

    PubMed  CAS  Google Scholar 

  16. Shim W-S, Conaway M, Masamura S, Yue W, Wang J-P, Kumar R, Santen RJ, Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo Endocrinol141: 396–405, 2000

    Article  PubMed  CAS  Google Scholar 

  17. El-Ashry D, Miller DL, Kharbanda S, Lippman ME, Kern FG, Constitutive Raf-1 kinase activity in breast cancer cells induces both estrogen-independent growth and apoptosisOncogene15: 423–435, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Donovan JCH, Milic A, Slingerland JM, Constitutive MEK/MAPK activation leads to p27Kip1 deregulation and antiestrogen resistance in human breast cancer cellsJ Biol Chem276: 40,888–40,895, 1997

    Google Scholar 

  19. McClelland RA, Barrow D, Madden T, Dutkowski CM, Pamment J, Knowlden J, Gee JM, Nicholson RI, Enhanced epidermal growth factor receptor signalling in MCF7 breast cancer cells following long-term culture in the presence of the pure antioestrogen ICI 182,780 (Faslodex)Endocrinol142: 2776–2788, 2001

    Article  CAS  Google Scholar 

  20. Gee JMW, Robertson JFR, Ellis IO, Nicholson RI, Phosphorylation of ERK1/2 mitogen activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancerInt J Cancer95: 247–254, 2001

    Article  PubMed  CAS  Google Scholar 

  21. Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U, Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patientsInt J Cancer (Pred Oncol)89: 384–388, 2000

    Article  CAS  Google Scholar 

  22. Bunone G, Briand P-A, Miksicek RJ, Picard D, Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylationEMBO J15: 2174–2183, 1996

    PubMed  CAS  Google Scholar 

  23. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P, Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinaseScience270: 1491–1494, 1995

    Article  PubMed  CAS  Google Scholar 

  24. Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA, pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167Mol Cell Biol18:1978–1984, 1998

    PubMed  CAS  Google Scholar 

  25. Lannigan DA, Estrogen receptor phosphorylationSteroids68:1–9, 2003

    Article  PubMed  CAS  Google Scholar 

  26. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S, Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alphaMol Cell Biol19: 5363–5372, 1999

    PubMed  CAS  Google Scholar 

  27. Deblois G, Giguere V, Ligand-independent coactivation of ERalpha AF-1 by steroid receptor RNA activator (SRA) via MAPK activationJ Steroid Biochem Mol Biol85: 123–131, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SAW, Osborne CK, Measurement of steroid hormone receptors in breast cancer patients on tamoxifenBreast Cancer Res Treat26: 237–246, 1993

    Article  PubMed  CAS  Google Scholar 

  29. Brunner N, Frandesen TL, Holst-Hansen C, Bei M, Thompson EW, Wakeling AE, Lippman ME, Clarke R, MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780Cancer Res53: 3229–3232, 1993

    PubMed  CAS  Google Scholar 

  30. Lykkesfeldt AE, Mogens MW, Briand P, Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAM R-1Cancer Res54: 1587–1595, 1994

    PubMed  CAS  Google Scholar 

  31. Robertson JF, Oestrogen receptor: a stable phenotype in breast cancerBr J Cancer73: 5–12, 1996

    PubMed  CAS  Google Scholar 

  32. Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, Nicholson RI, Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cellsBreast Cancer Res Treat81: 81–93, 2003

    Article  PubMed  CAS  Google Scholar 

  33. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H, PI3 kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistanceJ Biol Chem276: 9817–9824, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R, Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancerJ Natl Cancer Inst96: 926–935, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M, Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivationJ Steroid Biochem Mol Biol81: 333–341, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Martin LA, Farmer I, Johnston SR, Ali S, Marshall C, Dowsett M Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivationJ Biol Chem278: 30,458–30,468, 2003

    CAS  Google Scholar 

  37. Vendrell JA, Bieche I, Desmetz C, Badia E, Tozlu S, Nguyen C, Nicolas JC, Lidereau R, Cohen PA, Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell linesEndocr Relat Cancer12: 75–92, 2005

    Article  PubMed  CAS  Google Scholar 

  38. Hu XF, Veroni M, De Luise M, Wakeling A, Sutherland R, Watts CK, Zalcberg JR, Circumvention of tamoxifen resistance by the pure anti-estrogen ICI 182,780Int J Cancer55: 873–876, 1993

    Article  PubMed  CAS  Google Scholar 

  39. Coopman P, Garcia M, Brunner N, Derocq D, Clarke R, Rochefort H, Anti-proliferative and anti-estrogenic effects of ICI 164,384 and ICI 182,780 in 4-OH-tamoxifen-resistant human breast-cancer cellsInt J Cancer56: 295–300, 1994

    Article  PubMed  CAS  Google Scholar 

  40. Howell A, Robertson J, Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancerLancet345: 989–990, 1995

    Article  PubMed  CAS  Google Scholar 

  41. Howell A, DeFriend DJ, Robertson JF, Blamey RW, Anderson L, Anderson E, Sutcliffe FA, Walton P, Pharmacokinetics, pharmacological and anti-tumor effects of the specific anti-estrogen ICI 182,780 in women with advanced breast cancerBr J Cancer74: 300–308, 1996

    PubMed  CAS  Google Scholar 

  42. Grabe N, AliBaba2: context specific identification of transcription factor binding sitesIn Silico Biol2: S1, 2002

    PubMed  Google Scholar 

  43. Rozen S, Skaletsky HJ, 2000 Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  44. Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS, Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activityJ Biol Chem269: 4458–4466, 1994

    PubMed  CAS  Google Scholar 

  45. Joel PB, Traish AM, Lannigan DA, Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptorMol Endocrinol9: 1041–1052, 1995

    Article  PubMed  CAS  Google Scholar 

  46. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW, Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexesProc Natl Acad Sci USA95: 2920–2925, 1998

    Article  PubMed  CAS  Google Scholar 

  47. Shiau AK, Barstad D, Loria P, Cheng L, Kushner PJ, Agard DA, Greene GL, The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by TamoxifenCell95: 927–937, 1998

    Article  PubMed  CAS  Google Scholar 

  48. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M, Cofactor dynamics and sufficiency in estrogen receptor-regulated transcriptionCell103: 843–852, 2000

    Article  PubMed  CAS  Google Scholar 

  49. Shang Y, Brown M, Molecular determinants for the tissue specificity of SERMsScience295: 2465–2468, 2002

    Article  PubMed  CAS  Google Scholar 

  50. Smith CL, O’Malley BW, Coregulator function: a key to understanding tissue specificity of selective receptor modulatorsEndocr Rev25: 45–71, 2004

    Article  PubMed  CAS  Google Scholar 

  51. Font de Mora J, Brown M, AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptorMol Cell Biol20: 5041–5047, 2000

    Article  PubMed  Google Scholar 

  52. Rowan BG, Weigel NL, O’Malley BW, Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathwayJ Biol Chem275: 4475–4483, 2000

    Article  PubMed  CAS  Google Scholar 

  53. Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ, Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activityJ Biol Chem276: 22,177–22,182, 2001

    CAS  Google Scholar 

  54. Jonas BA, Privalsky ML, SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathwaysJ Biol Chem279: 54,676–54,686, 2004

    Article  CAS  Google Scholar 

  55. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P, Estrogen receptor pathways to AP-1J Steroid Biochem Mol Biol74: 311–317, 2000

    Article  PubMed  CAS  Google Scholar 

  56. Webb P, Lopez GN, Uht RM, Kushner PJ, Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogensMol Endocrinol9: 443–456, 1995

    Article  PubMed  CAS  Google Scholar 

  57. Dumont JA, Bitonti AJ, Wallace CD, Baumann RJ, Cashman EA, Cross-Doersen DE, Progression of MCF7 breast cancer cells to antiestrogen-resistant phenotype is accompanied by elevated levels of AP-1 DNA-binding activityCell Growth Diff7: 351–359, 1996

    PubMed  CAS  Google Scholar 

  58. Johnston SRD, Lu B, Scott GK, Kushner PJ, Smith IE, Dowsett M, Benz CC, Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumours with acquired tamoxifen resistanceClin Cancer Res5: 251–256, 1999

    PubMed  CAS  Google Scholar 

  59. Bates SE, Davidson NE, Valverius EM, Freter CE, Dickson RB, Tam JP, Kudlow JE, Lippman ME, Salomon DS, Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significanceMol Endocrinol2: 543–555, 1988

    Article  PubMed  CAS  Google Scholar 

  60. Saeki T, Cristiano A, Lynch MJ, Brattain M, Kim N, Normanno N, Kenney N, Ciardiello F, Salomon DS, Regulation by estrogen through the 5′-flanking region of the transforming growth factor alpha geneMol Endocrinol5: 1955–1963, 1991

    PubMed  CAS  Google Scholar 

  61. MacGregor Schafer J, Liu H, Levenson AS, Horiguchi J, Chen Z, Jordan VC, Estrogen receptor alpha mediated induction of the transforming growth factor alpha gene by estradiol and 4-hydroxytamoxifen in MDA-MB-231 breast cancer cells J Steroid Biochem Mol Biol78: 41–50, 2001

    Article  PubMed  CAS  Google Scholar 

  62. Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, Dickson RB, Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines Endocrinology136: 3983–3992, 1995

    Article  PubMed  CAS  Google Scholar 

  63. Weinstein-Oppenheimer CR, Burrows C, Steelman LS, McCubrey JA, The effects of beta-estradiol on Raf activity, cell cycle progression and growth factor synthesis in the MCF-7 breast cancer cell lineCancer Biol Ther1: 256–262, 2002

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs Kari Rossow and Ralf Janknecht of the Department of Biochemistry and Molecular Biology, Mayo Clinic, USA for the kind gift of the p68 RNA Helicase antibody and Dr. Judith Sebolt-Leopold for kindly providing the MEK1/2 inhibitor PD184352. We would also like to thank Carol Dutkowski and Pauline Finlay for expert technical assistance and Lynne Farrow for performing the statistical analyses. This research was generously supported by the Tenovus organisation.

‘Faslodex’ and ‘IRESSA’ are trademarks of the AstraZeneca group of companies

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.R. Hutcheson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britton, D., Hutcheson, I., Knowlden, J. et al. Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat 96, 131–146 (2006). https://doi.org/10.1007/s10549-005-9070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-9070-2

Keywords

Navigation