Skip to main content
Log in

The Effect of Stimulation Frequency and Retinal Stimulus Location on Visual Evoked Potential Topography

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The activity of cortical neurons is influenced by retinal stimulus location and temporal modulation. We investigated how reversal frequency of black-and-white checkerboard patterns presented in different parts of the visual field affects evoked potential topography. Visual evoked potentials were recorded from an array of 16 electrodes over the occipital cortex in 12 healthy adults. A checkerboard reversal stimulus (40′ check size) was presented with frequencies between 1.95 reversals/s and 7.81 reversals/s in the center or in the left or right hemiretina. Evoked potential fields displayed the well-known components of pattern reversal evoked activity. Computation of FFT and wavelets displayed electrical brain responses directly related to stimulation frequency. Further analysis showed that both retinal stimulus location and stimulation frequency affected visual evoked activity. Field strength as well as scalp field topography changed significantly with different reversal frequency. In addition, the pattern of lateralization of components also depended on temporal frequency of stimulation.Electrical brain activity elicited by visual stimuli shows globally similar features which are modulated by stimulus location and frequency. Our results indicate that—at least partly—different neuronal assemblies are activated by stimuli of different temporal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown JL. Flicker and intermittent stimulation. In: Graham CH, editors. Vision and visual perception, John Wiley & Sons, New York; 1965. p. 251–320.

  2. Campbell FW, Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 1970;207:635–52.

    PubMed  CAS  Google Scholar 

  3. DiRusso F, Pitzalis S, Aprile T, Spitoni G, Patria F, Stella A, Spinelli D, Hillyard SA. Spatio-temporal analysis of the cortical sources of the steady-state visual evoked potential. Human Brain Mapping 2007;28:323–34.

    Article  Google Scholar 

  4. Eysel UT, Burandt U. Fluorescent tube light evokes flicker responses in visual neurons. Vision Res 1984;24:943–8.

    Article  PubMed  CAS  Google Scholar 

  5. Heine M, Meigen T. The dependency of simultaneously recorded retinal and cortical potentials on temporal frequency. Doc Ophthalmol 2004;108:1–8.

    Article  PubMed  Google Scholar 

  6. Lehmann D, Skrandies W. Reference—free identification of components of checkerboard—evoked multichannel potential fields. Electroenceph clin Neurophysiol 1980;48:609–21.

    Article  PubMed  CAS  Google Scholar 

  7. Müller MM, Teder W, Hillyard SA. Magnetoencephalographic recording of steadystate visual evoked cortical activity. Brain Topogr 1997;9:163–8.

    Article  PubMed  Google Scholar 

  8. Nakayama K, Mackeben M. Steady state visual evoked potentials in the alert primate. Vision Res 1982;22:1261–71.

    Article  PubMed  CAS  Google Scholar 

  9. Regan D. Assessment of visual acuity by evoked potential recording:ambiguity caused by temporal dependence of spatial frequency selectivity. Vision Res 1978;18:439–43.

    Article  PubMed  CAS  Google Scholar 

  10. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall, JD, Leventhal AG. Signal timing across the macaque visual system. J Neurophysiol 1998;79:3272–8.

    PubMed  CAS  Google Scholar 

  11. Skrandies W. Critical flicker fusion and double flash discrimination in different parts of the visual field. Intern J Neuroscie 1985;25:225–31.

    CAS  Google Scholar 

  12. Skrandies W. Visual persistence of stereoscopic stimuli:electric brain activity without perceptual correlate. Vision Res 1987;27:2109–18.

    Article  PubMed  CAS  Google Scholar 

  13. Skrandies W. Brain mapping of visual evoked activity—topographical and functional components. Acta Neurol Taiw 2005;14:164–78.

    Google Scholar 

  14. Skrandies W, Jedynak A. Learning to see 3-D: psychophysical thresholds and electrical brain topography. NeuroReport 1999;10:249–53.

    Article  PubMed  CAS  Google Scholar 

  15. Skrandies W, Raile A. Cortical and retinal refractory periods in human visual system. Intern J Neuroscie 1989;44:185–95.

    Article  CAS  Google Scholar 

  16. Srinivasan R, Bibi FA, Nunez PL. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain Topogr 2006;18:167–87.

    Article  PubMed  Google Scholar 

  17. Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab 1999;19:272–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by Deutsche Forschungsgemeinschaft, DFG (SK 26/8-3)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Skrandies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrandies, W. The Effect of Stimulation Frequency and Retinal Stimulus Location on Visual Evoked Potential Topography. Brain Topogr 20, 15–20 (2007). https://doi.org/10.1007/s10548-007-0026-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-007-0026-1

Keywords

Navigation