Skip to main content
Log in

Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The drag coefficient \((C_{D})\), experimentally determined from observed wind speed and surface stress, has been reported to increase in the low wind-speed range (\(<\)3 m s\(^{-1}\)) as wind speed becomes smaller. However, until now, the exact causes for its occurrence have not been determined. Here, possible causes for increased \(C_{D}\) values in near-calm conditions are examined using high quality datasets selected from three-year continuous measurements obtained from the centre of Lake Kasumigaura, the second largest lake in Japan. Based on our analysis, suggested causes including (i) measurement errors, (ii) lake currents, (iii) capillary waves, (iv) the possibility of a measurement height within the interfacial/transition sublayer, and (v) a possible mismatch in the representative time scale used for mean and covariance averaging, are not considered major factors. The use of vector-averaged, instead of scalar-averaged, wind speeds and the presence of waves only partially explain the increase in \(C_{D}\) under light winds. A small increase in turbulent kinetic energy due to buoyant production at low wind speeds is identified as the likely major cause for this increase in \(C_{D}\) in the unstable atmosphere dominant over inland water surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradley E, Coppin P, Godfrey J (1991) Measurements of sensible and latent heat flux in the western equatorial Pacific Ocean. J Geophys Res 96:3375–3389. doi:10.1029/90JC01933

    Article  Google Scholar 

  • Bradshaw P, Ferriss DH, Atwell NP (1967) Calculation of boundary layer development using the turbulent energy equation. J Fluid Mech 28:593–616. doi:10.1017/S0022112067002319

    Article  Google Scholar 

  • Bourassa M, Vincent D, Wood W (1999) A flux parameterization including the effects of capillary waves and sea state. J Atmos Sci 56:1123–1139. doi:10.1175/1520-0469(1999)056<1123:AFPITE>2.0.CO;2

  • Bourassa M, Vincent D, Wood W (2001) A sea state parameterization with nonarbitrary wave age applicable to low and moderate wind speeds. J Phys Oceanogr. 31:2840–2851. doi:10.1175/1520-0485(2001)031<2840:ASSPWN>2.0.CO;2

  • Brunke A, Fairall C, Zeng X, Eymard L, Curry J (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Clim 16:619–635. doi:10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2

  • Brut A, Durand P, Caniaux G, Planton S (2005) Air–sea exchanges in the equatorial area from the EQUALANT99 dataset: bulk parametrizations of turbulent fluxes corrected for airflow distortion. Q J R Meteorol Soc 131:2497–2538. doi:10.1256/qj.03.185

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. D Reidel Publishing Company, Boston, 299 pp

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, Cambridge, 598 pp

  • Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640. doi:10.1002/qj.49708135027

    Article  Google Scholar 

  • Cheng I, Brutsaert W (1972) Wave effect and eddy diffusivity in the air near a water surface. Water Resour Res 8:1439–1443. doi:10.1029/WR008i006p01439

    Article  Google Scholar 

  • Deardorff J (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and forrayleigh convection. J Atmos Sci 27:1211–1213. doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2

  • Dörenkämper M, Optis M, Monahan A, Steinfeld G (2015) On the offshore advection of boundary-layer structures and the influence on offshore wind conditions. Boundary-Layer Meteorol 155:459–482. doi:10.1007/s10546-015-0008-x

    Article  Google Scholar 

  • Drennan W, Graber H, Hauser D, Quentin C (2003) On the wave age dependence of wind stress over pure wind seas. J Geophys Res 108:8062. doi:10.1029/2000JC000715

    Article  Google Scholar 

  • Dupuis H, Taylor P, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J Geophys Res 102:21115–21129. doi:10.1029/97JC00446

    Article  Google Scholar 

  • Edson J, Jampana V, Weller R, Bigorre S, Plueddemann A, Fairall C, Miller S, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. J Phys Oceanogr 43:1589–1610. doi:10.1175/JPO-D-12-0173.1

    Article  Google Scholar 

  • Fairall C, Bradley E, Rogers D, Edson J, Youngs G (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response. J Geophys Res 101:3747–3764. doi:10.1029/95JC03205

    Article  Google Scholar 

  • Fairall C, Bradley E, Hare J, Grachev A, Edson J (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE Algorithm. J Clim 16:571–591. doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. doi:10.1016/0168-1923(95)02248-1

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B (2004) Post-field data quality control. In Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208. doi:10.1007/1-4020-2265-4_9

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

  • Geernaert G, Davidson K, Larsen S, Mikkelsen T (1988) Wind stress measurements during the tower ocean wave and radar dependence experiment. J Geophys Res 93:13913–13923. doi:10.1029/JC093iC11p13913

    Article  Google Scholar 

  • Godfrey J, Beljaars A (1991) On the turbulent fluxes of buoyancy, heat and moisture at the air–sea interface at low wind speeds. J Geophys Res Oceans 96:22043–22048. doi:10.1029/91JC02015

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Zilitinkevich SS (1997) Surface-layer scaling for the convection-induced stress regime. Boundary-Layer Meteorol 83:423–439. doi:10.1023/A:1000281625985

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Larsen SE (1998) On the determination of the neutral drag coefficient in the convective boundary layer. Boundary-Layer Meteorol 86:257–278. doi:10.1023/A:1000617300732

    Article  Google Scholar 

  • Greenhut G, Khalsa S (1995) Bulk transfer coefficients and dissipation-derived fluxes in low wind speed conditions over the western equatorial Pacific Ocean. J Geophys Res 100:857–863. doi:10.1029/94JC02256

    Article  Google Scholar 

  • Heikinheimo M, Kangas M, Tourula T, Venäläinen A, Tattari S (1999) Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric For Meteorol 98–99:521–534. doi:10.1016/S0168-1923(99)00121-5

    Article  Google Scholar 

  • Howell J, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117–137. doi:10.1023/A:1000210427798

    Article  Google Scholar 

  • Ikebuchi S, Seki M, Ohtoh A (1988) Evaporation from Lake Biwa. J Hydrol 102:427–449. doi:10.1016/0022-1694(88)90110-2

    Article  Google Scholar 

  • INA Corporation (2008) Report on the investigation of lake current of Lake Kasumigaura, INA Corp., 724 pp. (in Japanese)

  • Kaimal J, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

  • Kara AB, Hurlburt HE, Wallcraft AJ (2005) Stability-dependent exchange coefficients for air–sea fluxes. J Atmos Ocean Technol 22:1080–1094. doi:10.1175/JTECH1747.1

    Article  Google Scholar 

  • Kondo J, Fujinawa Y (1972) Errors in estimation of drag coefficient for sea surface in light winds. J Meteorol Soc Jpn 50:145–149

    Google Scholar 

  • Lilly D (1968) Models of cloud-topped mixed layers under a strong inversion. Q J R Meteorol Soc 94:292–309. doi:10.1002/qj.49709440106

    Article  Google Scholar 

  • Liu X, Ohtaki E (1997) An independent method to determine the height of the mixed layer. Boundary-Layer Meteorol 85:497–504. doi:10.1023/A:1000510130752

    Article  Google Scholar 

  • Mahrt L, Sun J (1995) Dependence of surface exchange coefficients on averaging scale and grid size. Q J R Meteorol Soc 121:1835–1852. doi:10.1002/qj.49712152803

    Article  Google Scholar 

  • Mahrt L, Vickers D, Sun Jensen NO, Jørgensen H, Pardyjak E, Fernando H (2001) Determination of the surface drag coefficient. Boundary-Layer Meteorol 99:249–276. doi:10.1023/A:1018915228170

    Article  Google Scholar 

  • Metzger M, Holmes H (2008) Time scales in the unstable atmospheric surface layer. Boundary-Layer Meteorol 126:29–50. doi:10.1007/s10546-007-9219-0

    Article  Google Scholar 

  • Mitsuta Y, Tsukamoto O (1978) Drag coefficients in light wind. Bull Dis Prev Res Inst Kyoto Univ 28(Part2): 25-32. http://hdl.handle.net/2433/124877

  • Mitsuta Y, Hanafusa T, Maitani T, Fujitani T (1970) Turbulent fluxes over the Lake Kasumigaura. Spec Contrib Geophys Inst Kyoto Univ 10:75–84. http://hdl.handle.net/2433/178581

  • Miyano A (2010) Flux calculation over a lake surface using the bulk transfer method. MS Thesis, Graduate School of Life and Environmental Sciences, University of Tsukuba, 86 pp (in Japanese)

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000) Updated daily. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory. doi:10.5065/D6M043C6. Accessed 8 Jan 2016

  • Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. VDI Forschungsheft 361 (Beilage Forsch. Geb. Ingenieurw. B4), 22 pp (in German)

  • Oncley S, Friehe C, Larue J, Businger J, Itsweire E, Chang S (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53:1029–1044. doi:10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2

  • Oost W, Jacobs C, Oort C (2000) Stability effects on heat and moisture fluxes at sea. Boundary-Layer Meteorol 95:271–302. doi:10.1023/A:1002678429212

    Article  Google Scholar 

  • Oost W, Jacobs C, Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorol 103:409–438. doi:10.1023/A:1014913624535

    Article  Google Scholar 

  • Parekh A, Gnanaseelan C, Jayakumar A (2011) Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean. J Geophys Res 16:C01004. doi:10.1029/2010JC006346

    Google Scholar 

  • Peterson E (1969) Modification of mean flow and turbulent energy by a change in surface roughness under conditions of neutral stability. Q J R Meteorol Soc 95:561–575. doi:10.1002/qj.49709540509

    Article  Google Scholar 

  • Rao K (2004) Estimation of the exchange coefficient of heat during low wind convective conditions. Boundary-Layer Meteorol 111:247–273. doi:10.1023/B:BOUN.0000016495.85528.d7

    Article  Google Scholar 

  • Rao K, Narasimha R, Prabhu A (1996) Estimation of drag coefficient at low wind speeds over the monsoon trough land region during MONTBLEX-90. Geophys Res Lett 23:2617–2620. doi:10.1029/96GL02368

    Article  Google Scholar 

  • Sahlée E, Rutgersson A, Podgrajsek E, Bergström H (2014) Influence from surrounding land on the turbulence measurements above a lake. Boundary-Layer Meteorol 150:235–258. doi:10.1007/s10546-013-9868-0

  • Sakai R, Fitzjarrald D, Moore K (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192. doi:10.1175/1520-0450(2001)040<2178:IOLFCT>2.0.CO;2

  • Schumann U (1988) Minimum friction velocity and heat-transfer in the rough-surface layer of a convective boundary layer. Boundary-Layer Meteorol 44:311–326. doi:10.1007/BF00123019

    Article  Google Scholar 

  • Shintani T (2008) Numerical estimation of wind and wave fields for lake environment using meso–scale atmospheric model WRF. J Jpn Soc Civil Eng Ser B1(52):1237–1242. doi:10.2208/prohe.52.1237 (in Japanese)

  • Skamarock WC, Klemp JB, Dudhia J, Gill DI, Barker DN, Wang W, Powers JG (2005) A description of the Advanced Research WRF Version 2. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, 88 pp

  • Smedman A, Larsén X, Högström U, Kahma K, Pettersson H (2003) Effect of sea state on the momentum exchange over the sea during neutral conditions. J Geophys Res Oceans 108(C11):1–13. doi:10.1029/2002JC001526

    Article  Google Scholar 

  • Smith S (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93:15467–15472. doi:10.1029/JC093iC12p15467

    Article  Google Scholar 

  • Smith S, Anderson R, Oost W, Kraan C, Maat N, De Cosmo J, Katsaros K, Davidson K, Bumke K, Hasse L (1992) Sea-surface wind stress and drag coefficients—the HEXOS results. Boundary-Layer Meteorol 60:109–142. doi:10.1007/BF00122064

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp. doi:10.1007/978-94-009-3027-8

  • Stull R (1994) A convective-transport theory for surface fluxes. J Atmos Sci 51:3–22. doi:10.1175/1520-0469(1994)051<0003:ACTTFS>2.0.CO;2

  • Subrahamanyam DB, Ramachandran R (2002) Air–sea interface fluxes over the Indian Ocean during INDOEX, IFP-99. J Atmos Solar Terr Phys 64:291–305. doi:10.1016/S1364-6826(01)00091-8

    Article  Google Scholar 

  • Subrahamanyam DB, Ramachandran R (2003) Wind speed dependence of air-sea exchange parameters over the Indian Ocean during INDOEX, IFP-99. Ann Geophys 12:1667–1679. doi:10.5194/angeo-21-1667-2003

    Article  Google Scholar 

  • Sugita M, Brutsaert W (1996) Optimal measurement strategy for surface temperature to determine sensible heat flux from anisothermal vegetation. Water Resour Res 32:2129–2134. doi:10.1029/96WR00993

    Article  Google Scholar 

  • Sugita M, Hiyama T, Endo N, Tian S (1995) Flux determination over a smooth surface under strongly unstable conditions. Boundary-Layer Meteorol 73:145–158. doi:10.1007/BF00708934

    Article  Google Scholar 

  • Sugita M, Ikura H, Miyano A, Yamamoto K, Wei Z (2014) Evaporation from Lake Kasumigaura: annual totals and variability in time and space. Hydrol Res Lett 8:103–107. doi:10.3178/hrl.8.103

    Article  Google Scholar 

  • U.S. Geological Survey (2015) Global 30 arc-second elevation (GTOPO30). https://lta.cr.usgs.gov/GTOPO30. Accessed 8 Jan 2016

  • Vesala T, Eugster W, Ojala A (2012) Eddy covariance measurements over lakes. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences. Springer, Dordrecht, pp 365–376. doi:10.1007/978-94-007-2351-1

  • Wang W, Xiao W, Cao C, Gao Z, Hu Z, Liu S, Shen S, Wang L, Xiao Q, Xu J, Yang D, Lee X (2014) Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J Hydrol 511:811–824. doi:10.1016/j.jhydrol.2014.02.012

    Article  Google Scholar 

  • Webb E, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wei Z (2013) Estimation of surface fluxes using bulk tranfer methods over lake surface: an example of Lake Kasumigaura. MS Thesis, Graduate School of Life and Environmental Sciences, University of Tsukuba, 184 pp

  • Weller RA, Anderson SP (1996) Surface meteorology and air–sea fluxes in the Western Equatorial Pacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment. J Clim 9:1959–1990. doi:10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2

  • Wu J (1968) Laboratory studies of wind–wave interactions. J Fluid Mech 34:91–111. doi:10.1017/S0022112068001783

    Article  Google Scholar 

  • Wu J (1994) The sea-surface is aerodynamically rough even under light winds. Boundary-Layer Meteorol 69:149–158. doi:10.1007/BF00713300

    Article  Google Scholar 

  • Wyngaard J (1973) On surface-layer turbulence. In: Haugen D (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 101–149

    Google Scholar 

  • Xiao W, Liu S, Wang W, Yang D, Xu J, Cao C, Li H, Lee X (2013) Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Boundary-Layer Meteorol 148:479–494. doi:10.1007/s10546-013-9827-9

    Article  Google Scholar 

  • Yelland M, Taylor P (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26:541–558. doi:10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2

  • Zhu P, Furst J (2013) On the parameterization of surface momentum transport via drag coefficient in low-wind conditions. Geophys Res Lett 40:2824–2828. doi:10.1002/grl.50518

    Article  Google Scholar 

Download references

Acknowledgments

We thank H. Bamba, H. Kawano, and T. Saito (Kasumigaura River Office of the Kanto Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism of Japan) for allowing us to obtain measurements at the Koshin Observatory and for providing data. We are also grateful to reviewers whose comments helped improve the quality of our manuscript. Our research was supported and financed, in part, by JSPS KAKHNHI Grant Numbers 21310005, 24241053 and 15K01159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiaki Sugita.

Appendices

Appendix 1: Lake Kasumigaura: Its Topographical and Climatological Characteristics

Figure 7 provides a map of Lake Kasumigaura and the surrounding area. Lake Kasumigaura mainly consists of Nishiura \((172\,\hbox {km}^{2})\), smaller water bodies [(Kitaura \((36\,\hbox {km}^{2})\) and Sotonasakaura \((6\,\hbox {km}^{2})\)], and connecting rivers. The outlet of the lake is located approximately 15 km from the Pacific Ocean and is connected to the ocean through the Tone River. Approximately 30 km to the north-west of the lake is Mt. Tsukuba (877 m), the headwater region of the Kasumigaura watershed.

Figure 8 provides a histogram of the temperature difference between the water surface and the atmosphere during the three-year observation period. Unstable conditions clearly dominate in the region. Figure 9 provides two examples of diurnal meteorological variables, and the radiation and energy balance observed on two typical sunny days during summer and winter. Monthly changes for general climatic data as well as radiation and energy balance were reported in Sugita et al. (2014). In general, sunny weather dominates during the winter and summer periods, while spring and autumn are characterized by alternate sunny and cloudy conditions.

Fig. 7
figure 7

A map showing the topography surrounding Lake Kasumigaura

Fig. 8
figure 8

Histograms showing the distribution of the temperature difference between the water surface \((T_{s})\) and the atmosphere at \(z= 3.72\) m (\(T_{a}\))

Fig. 9
figure 9

Time changes for: a wind speed (U), water temperature \((T_{w})\) at \(z=-1.0\) m, water surface temperature \((T_{s})\), and air temperature \((T_{a})\) at \(z= 3.72\) m. b The radiation balance, where \(S_{u},S_{d},L_{u},L_{d}\), and \(R_{n}\) represent upward shortwave radiation, downward shortwave radiation, upward longwave radiation, downward longwave radiation, and net radiation, respectively. c Energy balance for the winter (15 January 2008) and summer (15 August 2008), where the storage term \(Q =R_{n}\)\(H -L_{e}E\). JST Japan Standard Time

Appendix 2: Koshin Observatory

Fig. 10
figure 10

A schematic figure showing instrumentation on and around the Koshin Observatory

Fig. 11
figure 11

A panoramic view from the turbulence sensors at 9.8 m located above the water surface

Figure 10 provides a schematic view of the instruments at the Koshin Observatory that provided the data used in our study. Figure 11 provides a panoramic view from the turbulence sensors located 9.8 m above the water surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Miyano, A. & Sugita, M. Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds. Boundary-Layer Meteorol 160, 319–346 (2016). https://doi.org/10.1007/s10546-016-0147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0147-8

Keywords

Navigation