Skip to main content
Log in

The Effect of a New Calibration Procedure on the Measurement Accuracy of Scintec’s Displaced-Beam Laser Scintillometer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We describe a new calibration procedure included in the production process of Scintec’s displaced-beam laser scintillometers (SLS-20/40) and its effect on their measurement accuracy. The calibration procedure determines the factual displacement distances of the laser beams at the receiver and transmitter units, instead of assuming a prescribed displacement distance of 2.70 mm. For this study, four scintillometers operated by Wageningen University and the German Meteorological Service were calibrated by Scintec and their data re-analyzed. The results show that significant discrepancies may exist between the factual and the prescribed displacement distances. Generally, the factual displacement is about 0.1 mm smaller than 2.70 mm, but extremes varied between 0.04 and 0.24 mm. Correspondingly, using non-calibrated scintillometers may result in biases as large as 20 % in the estimates of the inner-scale length, \(l_{0}\), the structure parameter of the refractive index, \(C_{n_{_2}}\), and the friction velocity, \(u_{*}\). The bias in the sensible heat flux was negligible, because biases in \(C_{n_{_2}}\) and \(u_{*}\) cancel. Hence, the discrepancies explain much of the long observed underestimations of \(u_{*}\) determined by these scintillometers. Furthermore, the calibration improves the mutual agreement between the scintillometers for \(l_{0}\), but especially for \(C_{n_{_2}}\). Finally, it is noted that the measurement specifications of the scintillometer do not expire and hence the results of the calibration can be applied retroactively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreas EL (1988) Estimating \(C_{n_{_2}}\) over snow and sea ice from meteorological data. J Opt Soc Am 5(4):481–495

  • Andreas EL (2012) Two experiments on using a scintillometer to infer the surface fluxes of momentum and sensible heat. J Appl Meteorol Climatol 51(9):1685–1701

    Article  Google Scholar 

  • Aubinet M (2008) Eddy covariance \(\text{ CO }_{2}\) flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18(6):1368–1378

    Article  Google Scholar 

  • Beyrich F, Adam WK (2007) Site and data report for the lindenberg reference site in CEOP—Phase I. Berichte des Deutschen Wetterdienstes 230, Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, Germany, ISSN 0072-4130, 55 pp

  • Beyrich F, Bange J, Hartogensis OK, Raasch S, Braam M, van Dinther D, Gräf D, Van Kesteren B, Van den Kroonenberg AC, Maronga B, Martin S, Moene AF (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144(1):83–112

    Article  Google Scholar 

  • Champagne FH, Friehe CA, Larue JC, Wyngaard JC (1977) Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J Atmos Sci 34:515–530

    Article  Google Scholar 

  • Coantic M, Lasserre JJ (1999) On pre-dissipative ‘bumps’ and a Reynolds-number-dependent spectral parameterization of turbulence. Eur J Mech B Fluid 18(6):1027–1047

    Article  Google Scholar 

  • De Bruin HAR, Meijninger WML, Smedman AS, Magnusson M (2002) Displaced-beam small aperture scintillometer test. Part I: the wintex data-set. Boundary-Layer Meteorol 105(1):129–148

    Article  Google Scholar 

  • Donzis DA, Sreenivasan KR (2010) The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J Fluid Mech 657:171–188

    Article  Google Scholar 

  • Frehlich R (1992) Laser scintillation measurements of the temperature spectrum in the atmospheric surface-layer. J Atmos Sci 49(16):1494–1509

    Article  Google Scholar 

  • Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental re-examination in the field. Boundary-Layer Meteorol 60(1–2):49–76

    Article  Google Scholar 

  • Grayshan KJ, Vetelino FS, Young CY (2008) A marine atmospheric spectrum for laser propagation. Waves Random Complex 18(1):173–184

    Article  Google Scholar 

  • Green AE, McAneney KJ, Astill MS (1994) Surface-layer scintillation measurements of daytime sensible heat and momentum fluxes. Boundary-Layer Meteorol 68(4):357–373

    Article  Google Scholar 

  • Green AE, McAneney KJ, Lagouarde JP (1997) Sensible heat and momentum flux measurement with an optical inner scale meter. Agric For Meteorol 85(3–4):259–267

    Article  Google Scholar 

  • Gruber M, Fochesatto GJ (2013) A new sensitivity analysis and solution method for scintillometer measurements of area-averaged turbulent fluxes. Boundary-Layer Meteorol 149(1):65–83

    Article  Google Scholar 

  • Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2):253–276

    Article  Google Scholar 

  • Hartogensis OK, De Bruin HAR, Van de Wiel BJH (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105(1):149–176

    Article  Google Scholar 

  • Hill RJ (1978a) Models of scalar spectrum for turbulent advection. J Fluid Mech 88:541–562

    Article  Google Scholar 

  • Hill RJ (1978b) Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges. Radio Sci 13:953–961

    Article  Google Scholar 

  • Hill RJ (1982) Theory of measuring the path-averaged inner scale of turbulence by spatial-filtering of optical scintillation. Appl Opt 21(7):1201–1211

    Article  Google Scholar 

  • Hill RJ (1992) Review of optical scintillation methods of measuring the refractive-index spectrum, inner scale and surface fluxes. Wave Random Media 2(3):179–201

    Article  Google Scholar 

  • Hill RJ, Clifford SF (1978) Modified spectrum of atmospheric-temperature fluctuations and its application to optical propagation. J Opt Soc Am 68(7):892–899

    Article  Google Scholar 

  • Hill RJ, Lataitis RJ (1989) Effect of refractive dispersion on the bichromatic correlation of irradiances for atmospheric scintillation. Appl Opt 28(19):4121–4125

    Article  Google Scholar 

  • Hill RJ, Ochs GR, Wilson JJ (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58(4):391–408

    Article  Google Scholar 

  • Lüers J, Bareiss J (2011) Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry - the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Theor Appl Climatol 105(3–4):387–402

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150(4):501–509

    Article  Google Scholar 

  • Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107(3):635–653

    Article  Google Scholar 

  • Rotach MW, Calanca P, Graziani G, Gurtz J, Steyn DG, Vogt R, Andretta M, Christen A, Cieslik S, Connolly R, De Wekker SFJ, Galmarini S, Kadygrov EN, Kadygrov V, Miller E, Neininger B, Rucker M, Van Gorsel E, Weber H, Weiss A, Zappa M (2004) Turbulence structure and exchange processes in an Alpine valley—the Riviera project. Bull Am Meteorol Soc 85(9):1367–1385

    Article  Google Scholar 

  • Savage MJ (2009) Estimation of evaporation using a dual-beam surface layer scintillometer and component energy balance measurements. Agric For Meteorol 149(3–4):501–517

    Article  Google Scholar 

  • Scintec (2006) Scintec surface layer scintillometer SLS20/SLS40 SLS20-A/SLS40—a user manual (including OEBMS1). Scintec Atmosphärenmesstechnik AG, Tübingen, Germany, 105 pp

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666pp

  • Tatarskii VI (1961) Wave propagation in a turbulent medium. McGraw-Hill Book Company Inc, New York, 285 pp

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58(4):367–389

    Article  Google Scholar 

  • Thiermann V, Rummel A (1998) Correction for transmitter vibrations in laser scintillation measurements. In: Proceedings of the conference on optics in atmospheric propagation and adaptive systems IV. European symposium on remote sensing, 21–24 September 1998, Barcelona, 9 pp

  • Van Kesteren B (2012) Measuring water-vapour and carbon-dioxide fluxes at field scales with scintillometry. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 220 pp

  • Van Kesteren B, Hartogensis OK (2011) Analysis of the systematic errors found in the Kipp & Zonen large-aperture scintillometer. Boundary-Layer Meteorol 138(3):493–509

    Article  Google Scholar 

  • Van Kesteren B, Hartogensis OK, van Dinther D, Moene AF, De Bruin HAR (2013) Measuring \(\text{ H }_{2}\text{ O }\) and \(\text{ CO }_{2}\) fluxes at field scales with scintillometry: part I—introduction and validation of four methods. Agric For Meteorol 178–179:75–78

    Article  Google Scholar 

  • Verma MK, Donzis D (2007) Energy transfer and bottleneck effect in turbulence. J Phys Math Theor 40(16):4401–4412

    Article  Google Scholar 

  • Ward HC, Evans JG, Hartogensis OK, Moene AF, De Bruin HAR, Grimmond CSB (2013) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc. 139: 1912–1922

  • Williams RM, Paulson CA (1977) Microscale temperature and velocity spectra in the atmospheric boundary layer. J Fluid Mech 83(3):547–567

    Article  Google Scholar 

  • Wyngaard JC (1973) On surface-layer turbulence. In: Haugen DA (ed) Workshop on mircometeorology. American Meteorological Society, Boston, pp 101–149

    Google Scholar 

  • Wyngaard JC, Clifford SF (1978) Estimating momentum, heat and moisture fluxes from structure parameters. J Atmos Sci 35(7):1204–1211

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Linda Kooijmans for her great commitment to the 2012 experiment and the employees of the Richard-Aßmann-Observatory in Lindenberg for their assistance during both experiments. Furthermore, we thank the anonymous reviewer for his/her valuable comments on the manuscript. The Dutch contribution was supported by the Dutch Technology Foundation (STW) under project number WTC7484 and by the Dutch Science Foundation (NWO) under project number NWO DN76-274. Additionally, the 2010 field campaign was part of the project “Turbulent Structure Parameters over Heterogeneous Terrain—Implications for the Interpretation of Scintillometer Data”. This project was co-funded by the German Science Foundation (DFG) under Contract BEY2044-3/1. Finally, the data analysis was supported by internal project funding of the German Federal Ministry of Transport, Building and Urban Development under project number SFP 1-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Van Kesteren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Kesteren, B., Beyrich, F., Hartogensis, O.K. et al. The Effect of a New Calibration Procedure on the Measurement Accuracy of Scintec’s Displaced-Beam Laser Scintillometer. Boundary-Layer Meteorol 151, 257–271 (2014). https://doi.org/10.1007/s10546-013-9891-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9891-1

Keywords

Navigation