Skip to main content
Log in

The Høvsøre Tall Wind-Profile Experiment: A Description of Wind Profile Observations in the Atmospheric Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present an analysis of data from a nearly 1-year measurement campaign performed at Høvsøre, Denmark, a coastal farmland area where the terrain is flat. Within the easterly sector upstream of the site, the terrain is nearly homogenous. This topography and conditions provide a good basis for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements at a meteorological mast. The sonic measurements cover the first 100 m and the wind lidar measures above 100 m every 50 m in the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet case, as expected. The simulated winds are also presented for completeness and show good agreement with the measurements, generally underpredicting the turning of the wind in both barotropic and baroclinic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://veaonline.risoe.dk/tallwind/cases/coordinate_system.png.

  2. http://veaonline.risoe.dk/tallwind/cases/Hovsore.png.

  3. http://veaonline.risoe.dk/tallwind/cases/windlidar.png.

  4. http://veaonline.risoe.dk/tallwind/cases/wrfmodel.png.

  5. http://veaonline.risoe.dk/tallwind/cases/lidar_sonic.png.

  6. http://veaonline.risoe.dk/tallwind/tallwindcases.html.

  7. http://veaonline.risoe.dk/tallwind/cases/case1.txt.

  8. http://veaonline.risoe.dk/tallwind/cases/case2.txt.

  9. http://veaonline.risoe.dk/tallwind/cases/case3.txt.

  10. http://veaonline.risoe.dk/tallwind/cases/case4.txt.

  11. http://veaonline.risoe.dk/tallwind/cases/case5.txt.

  12. http://veaonline.risoe.dk/tallwind/cases/case6.txt.

  13. http://veaonline.risoe.dk/tallwind/cases/case7.txt.

  14. http://veaonline.risoe.dk/tallwind/cases/case8.txt.

  15. http://veaonline.risoe.dk/tallwind/cases/case9.txt.

  16. http://veaonline.risoe.dk/tallwind/cases/case10.txt.

References

  • Bergmann JC (2006) Comments on: the neutral, barotropic planetary boundary layer, capped by a low-level jet inversion. Boundary-Layer Meteorol 119:171–179

    Article  Google Scholar 

  • Clarke RH, Hess GD (1974) Geostrophic departure and the functions A and B of Rossby-number similarity theory. Boundary-Layer Meteorol 7:267–287

    Article  Google Scholar 

  • Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AH (1971) The Wangara experiment: boundary layer data. Technical Report No. 19, Div. Meteor. Phys. CSIRO, Mordialloc, p 316

  • Floors R, Vincent CL, Gryning S-E, Peña A, Batchvarova E (2013) The wind profile in the coastal boundary layer: wind lidar measurements and numerical modelling. Boundary-Layer Meteorol 147:469–491

  • Gryning S-E, Batchvarova E, Floors R (2013a) A study on the effect of nudging on long-term boundary-layer profiles of wind and Weibull distribution parameters in a rural coastal area. J Appl Meteorol Climatol (in press)

  • Gryning S-E, Batchvarova E, Floors R, Peña A, Brümmer B, Hahmann AN, Mikkelsen T (2013b) Long-term profiles of wind and Weibull distribution parameters up to 600 meters in a rural coastal and an inland suburban area. Boundary-Layer Meteorol. doi:10.1007/s10546-013-9857-3

  • Hess GD (2004) The neutral, barotropic planetary boundary layer, capped by a low-level inversion. Boundary-Layer Meteorol 110:319–355

    Article  Google Scholar 

  • Holton JR, Hakim GJ (2004) An introduction to dynamic meteorology, 4th edn. Elsevier, Waltham, 535 pp

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Jørgensen HE, Mikkelsen T, Gryning S-E, Larsen S, Astrup P, Srensen PE (2008) Measurements from Høvsøre met mast. Technical Report Risoe-R-1592(EN), Risø National Laboratory, Roskilde, 32 pp

  • Kristensen L, Jensen G (1999) Geostrophic winds in Denmark: a preliminary study. Technical Report Risoe-R-1145(EN), Risø National Laboratory, Roskilde, 43 pp

  • Lange B, Larsen S, Højstrup J, Barthelmie R (2004) Importance of thermal effects and the sea surface roughness for offshore wind resource assessment. J Wind Eng Ind Aerodyn 92:959–988

    Article  Google Scholar 

  • Lettau H (1950) A re-examination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer. Tellus 2:125–129

    Article  Google Scholar 

  • Lettau HH (1962) Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitraege Phys Atmos 35:195–212

    Google Scholar 

  • Lettau H (1990) The O’Neill experiment of 1953. Boundary-Layer Meteorol 50:1–9

    Article  Google Scholar 

  • Lettau H, Davidson B (1957) Exploring the atmosphere’s first mile, vols I and II. Pergamon Press, New York, 378 pp

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Boundary-Layer Meteorol 100:459–468

    Article  Google Scholar 

  • Mildner P (1932) Über die Reibung in einer speziellen Luftmasse in den untersten Schichten der Atmosphäre (On the friction inside a particular air mass in the lowest layers of the atmosphere). Beitraege Phys Atmos 19:151–158

    Google Scholar 

  • Mortensen NG, Heathfield DN, Myllerup L, Landberg L, Rathmann O (2007) Getting started with WAsP 9. Technical Report Ris-I-2571(EN), Risø National Laboratory, Roskilde, 70 pp

  • Peña A (2009) Sensing the wind profile. Technical Report Ris-PhD-45(EN), Risø DTU, Roskilde, 80 pp

  • Peña A, Gryning S-E, Mann J (2010a) On the length-scale of the wind profile. Q J R Meteorol Soc 136:2119–2131

    Article  Google Scholar 

  • Peña A, Gryning S-E, Mann J, Hasager CB (2010b) Length scales of the neutral wind profile over homogeneous terrain. J Appl Meteorol Climatol 49:792–806

    Article  Google Scholar 

  • Peña A, Gryning S-E, Hahmann AN (2013) Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site. J Geophys Res Atmos 118:1–17

    Article  Google Scholar 

  • Riopelle G, Stubley GD (1988) The influence of atmospheric stability on the ‘Leipzig boundary-layer structure. Boundary-Layer Meteorol 46:207–227

    Article  Google Scholar 

  • Sathe A, Mann J (2012) Measurement of turbulence spectra using scanning pulsed wind lidars. J Geophys Res 117, D01201 (11 pp)

  • Sathe A, Mann J, Gottschall J, Courtney MS (2011) Can wind lidars measure turbulence? J Atmos Ocean Technol 28:853–868

    Article  Google Scholar 

  • Shary PA (1995) Land surface in gravity points classification by a complete system of curvatures. Math Geol 27:373–390

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Technical Report NCAR/TN-475+STR, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, 113 pp

Download references

Acknowledgments

Funding from the Danish Council for Strategic Research Project Number 2104-08-0025 “Tall Wind” project is acknowledged. We would also like to thank the Test and Measurements section of DTU Wind Energy for the maintenance of the Høvsøre database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, A., Floors, R. & Gryning, SE. The Høvsøre Tall Wind-Profile Experiment: A Description of Wind Profile Observations in the Atmospheric Boundary Layer. Boundary-Layer Meteorol 150, 69–89 (2014). https://doi.org/10.1007/s10546-013-9856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9856-4

Keywords

Navigation