Skip to main content
Log in

Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The experiment IGLOS (Investigation of the Greenland Boundary Layer Over Summit) was conducted in June and July 2002 in the central plateau of the Greenland inland ice. The German research aircraft Polar2, equipped with the turbulence measurement system Meteopod, was used to investigate turbulence and radiation flux profiles near research station “Summit Camp”. Aircraft measurements are combined with measurements of radiation fluxes and turbulent quantities made from a 50 m tower at Summit Camp operated by Eidgenössische Technische Hochschule (ETH) Zürich. During all six flight missions, well-developed stable boundary layers were found. Even in high-wind conditions, the surface inversion thickness did not exceed roughly 100 m. The turbulent height of the stable boundary layer (SBL) was found to be much smaller than the surface inversion thickness. Above the surface layer, significant turbulent fluxes occurred only intermittently in intervals on the order of a few kilometres. Turbulent event fraction in the upper SBL shows the same dependence on gradient Richardson number as reported for near-surface measurements. Clear-air longwave radiation divergence was always found to contribute significantly to the SBL heat budget. In low-wind cases, radiative cooling even turned out to be dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bange J and Roth R (1999). Helicopter-borne measurements in the nocturnal boundary layer over land - a case study. Boundary-Layer Meteorol 92: 295–325

    Article  Google Scholar 

  • Böhme T, Hauf T and Lehmann V (2004). Investigation of short-period gravity waves with the Lindenberg 482 MHz tropospheric wind profiler. Quart J Roy Meteorol Soc 130(603): 2933–2952

    Article  Google Scholar 

  • Cassano JJ, Parish TR and King JC (2001). Evaluation of turbulent surface flux relationships for the stable surface layer over halley, Antarctica. Mon Wea Rev 129: 26–46

    Article  Google Scholar 

  • Colbeck SC (1997). Model of wind pumping for layered snow. J Glaciol 43: 60–65

    Google Scholar 

  • Coulter RL and Doran JC (2002). Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol 105: 329–349

    Article  Google Scholar 

  • Cullen NJ, Steffen K and Blanken PD (2007). Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122: 439–455

    Article  Google Scholar 

  • Doran JC (2004). Characteristics of intermittent turbulent temperature fluxes in stable conditions. Boundary-Layer Meteorol 112: 241–255

    Article  Google Scholar 

  • Drüe C and Heinemann G (2001). Airborne investigation of Arctic boundary layer fronts over the marginal ice zone of the Davis Strait. Boundary-Layer Meteorol 101: 261–292

    Article  Google Scholar 

  • Drüe C and Heinemann G (2002). Turbulence structures over the marginal ice zone under flow parallel to the ice edge: measurements and parameterizations. Boundary-Layer Meteorol 102: 83–116

    Article  Google Scholar 

  • Drüe C, Heinemann G (2003) Investigation of the greenland atmospheric boundary layer over summit 2002 (IGLOS). Field phase report., Vol. 447 of Reports on Polar and Marine Research., 81 pp

  • Finnigan JJ, Clement R, Malhi Y, Leuning R and Cleugh H (2003). A re-evaluation of long-term flux measurement techniques part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107(1): 1–48

    Article  Google Scholar 

  • Foken T and Wichura B (1996). Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78: 83–105

    Article  Google Scholar 

  • Forrer J and Rotach MW (1997). On the structure in the stable boundary layer over the Greenland ice sheet. Boundary-Layer Meteorol 85: 111–136

    Article  Google Scholar 

  • Garratt J and Brost R (1981). Radiative cooling effects within and above the nocturnal boundary layer. J Atmos Sci 38(12): 2730–2746

    Article  Google Scholar 

  • Handorf D (1996) Zur Parameterisierung der stabilen atmosphärischen Grenzschicht über einem antarktischen Schelfeis, Vol. 204 of Reports on Polar Research 133 pp

  • Handorf D, Foken T and Kottmeier C (1999). The stable atmosphere boundary layer over an antarctic ice sheet. Boundary-Layer Meteorol 91: 165–189

    Article  Google Scholar 

  • Heinemann G (1998) Katabatic wind and Boundary Layer Front Experiment around Greenland (“KABEG 97”), Vol. 269 of Reports on Polar Research. 94 pp

  • Heinemann G (1999). The KABEG’97 field experiment: an aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Boundary-Layer Meteorol 93: 75–116

    Article  Google Scholar 

  • Heinemann G (2002). Aircraft-based measurements of turbulence structures in the katabatic flow over Greenland. Boundary-Layer Meteorol 103: 49–81

    Article  Google Scholar 

  • Heinemann G (2004). Local similarity properties of the continously turbulent stable boundary layer over greenland. Boundary-Layer Meteorol 112: 283–305

    Article  Google Scholar 

  • Hoch SW (2005) Radiative flux divergence in the surface boundary layer. A study based on observations at Summit, Greenland. Ph.D. thesis, ETH Zürich, Switzerland, 180 pp

  • Holtslag AAM and Nieuwstadt FTM (1986). Scaling the atmospheric boundary layer. Boundary-Layer Meteorol 36: 201–209

    Article  Google Scholar 

  • Horst TW (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol 82: 219–233

    Article  Google Scholar 

  • Howell JF and Sun J (1999). Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520

    Article  Google Scholar 

  • Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows. Oxford University Press, New York, 289 pp

    Google Scholar 

  • King J (1990). Some measurements of turbulence over an antarctic ice shelf. Quart J Roy Meteorol Soc 116: 379–400

    Article  Google Scholar 

  • Kondo J, Kanechika O and Yasuda N (1978). Heat and momentum transfers under strong stability in the atmospheric surface layer. J Atmos Sci 35: 1012–1021

    Article  Google Scholar 

  • Lenschow DH, Mann J and Kristensen L (1994). How long is long enough when measuring fluxes an other turbulence statistics?. J Atmos Oceanic Technol 11: 661–673

    Article  Google Scholar 

  • Mahrt L (1981). Modeling the depth of the stable boundary-layer. Boundary-Layer Meteorol 21: 3–19

    Article  Google Scholar 

  • Mahrt L (1985). Vertical structure and turbulence in the very stable boundary layer. J Atmos Sci 42(22): 2333–2349

    Article  Google Scholar 

  • Mahrt L (1998). Stratified atmospheric boundary layers and breakdown of model. Theor Comput Fluid Dynam 11: 263–279

    Article  Google Scholar 

  • Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T and Onkley S (1998). Nocturnal boundary layer regimes. Boundary-Layer Meteorol 88: 255–278

    Article  Google Scholar 

  • Moncrieff J, Clemens R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis, Vol. 29 of Atmospheric and oceanographic sciences library. Springer Berlin Chapt. 2, pp. 7–32, ISBN: 978-1-4020-2264-7

  • Nieuwstadt FTM (1984). Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol 30: 1–55

    Article  Google Scholar 

  • Oerlemans J and Vugts H (1993). A meteorological experiment in the ablation zone of the Greenland ice sheet. Bull Amer Meteorol Soc 74: 355–365

    Article  Google Scholar 

  • Ohmura A, Gilgen H, Hegner H, Müller G, Wild M, Dutton E, Forgan B, Fröhlich C, Philipona R, Heimo A, König-Langlo G, McArthur B, Pinker R, Whitlock CH and Dehne K (1998). Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Amer Meteorol Soc 79: 2115–2136

    Article  Google Scholar 

  • Schelander P, Hoch SW, Bourgeois CS, Ohmura A, Calanca P (2004) Climatic conditions during the ETH measurement campaign at summit, Greenland, 2001–2002. In: EGU 1st general assembly, 25–30 april 2004, Nice, France, Vol.6 of geophysical research Abstracts

  • Stull RB (1988). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Van de Wiel BJH, Ronda RJ, Moene AF, De Bruin HAR and Holtslag AAM (2002). Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J Atmos Sci 59: 942–958

    Article  Google Scholar 

  • Vickers D and Mahrt L (1997). Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14: 512–526

    Article  Google Scholar 

  • Vickers D and Mahrt L (2003). The cospectral gap and turbulent flux calculations. J Atmos Oceanic Technol 20: 660–672

    Article  Google Scholar 

  • Vörsmann P (1990). Meteopod, an airborne system for measurements of mean wind, turbulence and other meteorological parameters. Onde Electrique 70: 31–38

    Google Scholar 

  • Xiao J, Bintanja R, Déry S, Mann GW and Taylor PA (2000). An intercomparison among four models of blowing snow. Boundary-Layer Meteorol 97: 109–135

    Article  Google Scholar 

  • Zilintinkevich S and Baklanov A (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorol 105: 389–409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Drüe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drüe, C., Heinemann, G. Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland. Boundary-Layer Meteorol 124, 361–381 (2007). https://doi.org/10.1007/s10546-007-9175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9175-8

Keywords

Navigation