Skip to main content
Log in

Tangling Turbulence and Semi-Organized Structures in Convective Boundary Layers

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new mean-field theory of turbulent convection is developed based on the idea that only the small-scale region of the spectrum is considered as turbulence, whereas its large-scale part, including both regular and semi-organized motions, is treated as the mean flow. In the shear-free regime, this theory predicts the convective wind instability, which causes the formation of large-scale semi-organized motions in the form of cells. In the presence of wind shear, the theory predicts another type of instability, which causes the formation of large-scale semi-organized structures in the form of rolls and the generation of convective-shear waves propagating perpendicular to the convective rolls. The spatial characteristics of these structures, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This theory might be useful for understanding the origin of large-scale cells and rolls observed in the convective boundary layer and laboratory turbulent convection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers W. and Brümmer B. (1994). ‘Atmospheric Boundary Layer Rolls Observed by the Synthetic Aperture Radar Aboard the ERS-1 Satellite’. J. Geophys. Res 99(C6):12613–12621

    Article  Google Scholar 

  • Asai T. (1970). ‘Stability of a Plane Parallel Flow with Variable Vertical Shear and Unstable Stratification’. J. Meteorol. Soc. Japan 48:129–139

    Google Scholar 

  • Atkinson B.W. and Wu Zhang J. (1996). ‘Mesoscale Shallow Convection in the Atmosphere’. Rev. Geophys. 34:403–431

    Article  Google Scholar 

  • Brooks I.M. and Rogers D.P. (1997). ‘Aircraft Observations of Boundary Layer Rolls off the Coast of California’. J. Atmos. Sci 54:1834–1849

    Article  Google Scholar 

  • Brümmer B. (1999). ‘Roll and Cell Convection in Winter-Time Arctic Cold-Air Outbreaks’. J. Atmos. Sci 56:2613–2636

    Article  Google Scholar 

  • Canuto V.M., Minotti F., Ronchi C., Ypma R.M., and Zeman O. (1994). ‘Second-Order Closure PBL Model with New Third-Order Moments: Comparison with LES’. J. Atmos. Sci 51:1605–1618

    Article  Google Scholar 

  • Chlond A. (1992). ‘Three-Dimensional Simulation of Cloud Street Development during a Cold Air Outbreak’. Boundary-Layer Meteorol 58:161–200

    Article  Google Scholar 

  • Elperin, T., Kleeorin, N., Rogachevskii, I., and Zilitinkevich, S.: 2002, ‘Formation of Large-Scale Semi-Organized Structures in Turbulent Convection’. Phys. Rev. E 66:066305 (1–15)

    Google Scholar 

  • Etling D. (1985). ‘Some Aspects on Helicity in Atmospheric Flows’. Contrib. Atmos. Phys. 58:88–100

    Google Scholar 

  • Etling D. and Brown R.A. (1993). ‘Roll Vortices in the Planetary Boundary Layer: A Review’. Boundary-Layer Meteorol 65:215–248

    Article  Google Scholar 

  • Garratt J.R. (1992). The Atmospheric Boundary Layer. Cambridge University Press, U.K., 316 pp

    Google Scholar 

  • Hunt J.C.R. (1984). ‘Turbulence Structure in Thermal Convection and Shear-Free Boundary Layers’. J. Fluid Mech 138:161–184

    Article  Google Scholar 

  • Hunt J.C.R., Kaimal J.C., and Gaynor J.I. (1988). ‘Eddy Structure in the Convective Boundary Layer – New Measurements and New Concepts’. Quart. J. Roy. Meteorol. Soc 114:837–858

    Google Scholar 

  • Kadanoff L.P. (2001). ‘Turbulent Heat Flow: Structures and Scaling’. Phys. Today 54:34–38

    Article  Google Scholar 

  • Kaimal J.C. and Fennigan J.J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, 289 pp

    Google Scholar 

  • Kaimal J.C., Wyngaard J.C., Haugen D.A., Cote O.R., and Izumi Y. (1976). ‘Turbulence Structure in the Convective Boundary Layer’. J. Atmos. Sci 33:2152–2169

    Article  Google Scholar 

  • Krishnamurti R. and Howard L.N. (1981). ‘Large-Scale Flow Generation in Turbulent Convection’. Proc. Natl. Acad. Sci. USA 78:1981–1985

    Article  Google Scholar 

  • Lenschow D.H. and Stephens P.L. (1980). ‘The Role of Thermals in the Convective Boundary Layer’. Boundary-Layer Meteorol 19:509–532

    Article  Google Scholar 

  • Lumley J.L. (1967). ‘Rational approach to Relations between Motions of Different Scales in Turbulent Flows’. Phys. Fluids 10:1405–1408

    Article  Google Scholar 

  • Mahrt L. (1991). ‘Eddy Asymmetry in the Sheared Heated Boundary Layer’. J. Atmos. Sci 48:472–492

    Article  Google Scholar 

  • Mason P.J. (1985). ‘A Numerical Study of Cloud Street in the Planetary Boundary Layer’. Boundary-Layer Meteorol 32:281–304

    Article  Google Scholar 

  • McComb W.D. (1990). The Physics of Fluid Turbulence. Clarendon Press, Oxford, 572 pp

    Google Scholar 

  • Miura Y. (1986). ‘Aspect Ratios of Longitudinal Rolls and Convection Cells Observed during Cold Air Outbreaks’. J. Atmos. Sci 43:26–39

    Article  Google Scholar 

  • Moeng C.-H. and Wyngaard J.C. (1984). ‘Statistics of Conservative Scalars in the Convective Boundary Layer’. J. Atmos. Sci 41:3161–3169

    Article  Google Scholar 

  • Moeng C.-H. and Wyngaard J.C. (1989). ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modelling’. J. Atmos. Sci 46:2311–2330

    Article  Google Scholar 

  • Monin A.S. and Yaglom A.M. (1975). Statistical Fluid Mechanics. MIT Press, Cambridge Massachusetts, Vol. 2, 874 pp

    Google Scholar 

  • Niemela J.J., Skrbek L., Sreenivasan K.R., and Donnelly R.J. (2001). ‘The Wind in Confined Thermal Convection’. J. Fluid Mech 449:169–178

    Article  Google Scholar 

  • Orszag S.A. (1970). ‘Analytical Theories of Turbulence’. J. Fluid Mech 41:363–386

    Article  Google Scholar 

  • Pouquet A., Frisch U., and Leorat J. (1976). ‘Strong MHD Turbulence and the Nonlinear Dynamo Effect’. J. Fluid Mech 77:321–354

    Article  Google Scholar 

  • Robinson S.K. (1991). ‘Coherent Motions in the Turbulent Boundary Layer’. Annu. Rev. Fluid Mech 23:601–640

    Article  Google Scholar 

  • Schmidt H. and Schumann U. (1989). ‘Coherent Structure in the Convective Boundary Layer Derived from Large-Eddy Simulations’. J. Fluid Mech 200:511–562

    Article  Google Scholar 

  • Shirer H.N. (1986). ‘On Cloud Street Development in Three Dimensions: Parallel and Rayleigh Instabilities’. Contrib. Atmos. Phys 59:126–149

    Google Scholar 

  • Stensrud D.J. and Shirer H.N. (1988). ‘Development of Boundary Layer Rolls from Dynamical Instabilities’. J. Atmos. Sci 45:1007–1019

    Article  Google Scholar 

  • Stull R.B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Sykes R.I. and Henn D.C. (1989). ‘Large-Eddy Simulation of Turbulent Sheared Convection’. J. Atmos. Sci 46:1106–1118

    Article  Google Scholar 

  • Weckwerth T.M., Horst T.W., and Wilson J.W. (1999). ‘An Observational Study of the Evolution of Horizontal Convective rolls’. Mon. Wea. Rev 127:2160–2179

    Article  Google Scholar 

  • Williams A.G. and Hacker J.M. (1992). ‘The Composite Shape and Structure of Coherent Eddies in the Convective Boundary Layer’. Boundary-Layer Meteorol 61:213–245

    Article  Google Scholar 

  • Williams A.G. and Hacker J.M. (1993). ‘Interaction between Coherent Eddies in the Lower Convective Boundary Layer’. Boundary-Layer Meteorol 64:55–74

    Article  Google Scholar 

  • Wyngaard J.C. (1983). ‘Lectures on the Planetary Boundary Layer’. In: Lilly D.K. and Gal-Chen T (eds). Mesoscale Meteorology – Theories, Observations and Models. Reidel, Dordrecht, pp. 603–650

    Google Scholar 

  • Wyngaard J.C. (1987). ‘A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion’. J. Atmos. Sci 44:1083–1087

    Article  Google Scholar 

  • Wyngaard J.C. (1992). ‘Atmospheric Turbulence’. Annu. Rev. Fluid Mech 24:205–233

    Article  Google Scholar 

  • Young G.S., Kristovich D.A.R., Hjelmfelt M.R., and Foster R.C. (2002). ‘Rolls, Streets, Waves and More’. Bull. Amer. Meteorol. Soc 83:997–1001

    Article  Google Scholar 

  • Zeman O. and Lumley J.L. (1976). ‘Modeling Buoyancy Driven Mixed Layers’. J. Atmos. Sci 33:1974–1988

    Article  Google Scholar 

  • Zilitinkevich, S. S.: 1991. Turbulent Penetrative Convection:Avebury Technical, Aldershot, 179 pp

  • Zilitinkevich S.S., Grachev A., and Hunt J.C.R. (1998). ‘Surface Frictional Processes and Non-Local Heat/Mass Transfer in the Shear-Free Convective Boundary Layer’. In: Plate E.G. et al. (eds). Buoyant Convection in Geophysical Flows. Kluwer Academic Publications, Dordrecht, The Netherlands, pp. 83–113

    Google Scholar 

  • Zilitinkevich S.S., Gryanik V.M., Lykossov V.N., and Mironov D.V. (1999). ‘Third-Order Transport and Nonlocal Turbulence Closures for Convective Boundary Layers’. J. Atmos. Sci 56:3463–3477

    Article  Google Scholar 

  • Zocchi G., Moses E., and Libchaber A. (1990). ‘Coherent Structures in Turbulent Convection’. Physica A 166:387–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Elperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elperin, T., Kleeorin, N., Rogachevskii, I. et al. Tangling Turbulence and Semi-Organized Structures in Convective Boundary Layers. Boundary-Layer Meteorol 119, 449–472 (2006). https://doi.org/10.1007/s10546-005-9041-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9041-5

Keywords

Navigation