Skip to main content
Log in

A PDMS-based microneedle array electrode for long-term ECG recording

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

To acquire high-quality electrocardiogram (ECG) signals, traditional Ag/AgCl wet electrodes used together with conductive gel can effectively reduce electrode–skin interface impedance (EII) in a short term. However, their weaknesses of poor flexibility and instability can no longer meet the long-term monitoring requirements of intelligent wearable devices. Owing to the flexible dry electrode without conductive gel, it is a good choice to solve the critical problem on drying-out of conductive gel. Therefore, we develop a flexible microneedle array electrode (FMAE) based on polydimethylsiloxane (PDMS) substrate, which obtains reliable bioelectrical signals by way of penetrating into the stratum corneum (SC) of the skin. The fabrication process, including silicon mold, twice PDMS shape-transferring and encapsulation, has advantages of low cost, repeatable production and good biocompatibility. Afterwards, by comparing the performance with different electrodes, impedance test results indicate that the impedance of FMAE are smaller and more stable, and ECG tests in long term and at resting/jogging states also verify that FMAE can obtain durable, stable and reliable signals. In conclusion, FMAE is promising in long-term ECG monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Y. Ami, H. Tachikawa, N. Takano, et al., Formation of polymer microneedle arrays using soft lithograph. J. Micro-Nanolith. Mem. (2011). https://doi.org/10.1117/1.3553393.

  • Y. Chen, W. Pei, S. Chen, et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode. Sensor. Actuat. B-Chem. (2013). https://doi.org/10.1016/j.snb.2013.07.075.

  • N. Chou, J. Lee, S. Kim, Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4904395.

  • W. Dong, X. Cheng, T. Xiong, X. Wang, Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevice 21, 6 (2019)

    Article  Google Scholar 

  • T.N. Gardner, G, A, D, Briggs, Biomechanical measurements in microscopically thin stratum corueum using aconstics. Skin Res. Technol. 7(4), 254–261 (2001)

  • P. Griss, P. Enoksson, H.K. Tolvanen-Laakso et al., Micromachined electrodes for biopotential measurements. J. Microelectromech. S. 10(1), 10–16 (2001)

    Article  Google Scholar 

  • F.M. Hendriks, D. Brokken, J.T.W.M. van Eemeren et al., A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9(3), 274–283 (2003)

    Article  Google Scholar 

  • F.M. Hendriks, D. Brokken, C. Oomens et al., The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med. Eng. Phys. 28(3), 259–266 (2006)

    Article  Google Scholar 

  • R. Helgason, A. Banavali, Y. Lai, Cohesive dry ECG sensor using silver nanowires and PDMS tuned for adhesion. Med Devices Sens. 2, e10025 (2019)

    Article  Google Scholar 

  • M. Kim, G. Gu, K. J. Cha, et al., Wireless sEMG system with a microneedle-based high-density electrode array on a flexible substrate. Sensors-Basel. (2017). https://doi.org/10.3390/s18010092.

  • A. Kundu, T. Ausaf, S. Rajaraman, 3D printing, ink casting and micromachined lamination (3D PICLM): A makerspace approach to the fabrication of biological microdevices. Micromachines-Basel. (2018). https://doi.org/10.3390/mi9020085.

  • Y. Meng, Z.B. Li, X. Chen et al., A flexible dry micro-dome electrode for ECG monitoring. Microsyst. Technol. 21(6), 1241–1248 (2015)

    Article  Google Scholar 

  • K. Nagamine, J. Kubota, H. Kai, et al., An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices. (2017). https://doi.org/10.1007/s10544-017-0207-y.

  • Y. Nishinaka, R. Jun, G. S. Prihandana, et al., Fabrication of polymeric dry microneedle electrodes coated with nanoporous parylene. in Transducers & Eurosensors Xxvii, Barcelona, Spain, 1326–1327 (2013)

  • T. Niederhauser, T. Marisa, L. Kohler et al., A baseline wander tracking system for artifact rejection in long-term electrocardiography. IEEE Trans. Biomed. Circuits Syst. 10(1), 255–265 (2016)

    Article  Google Scholar 

  • C. O'Mahony, K. Grygoryev, A. Ciarlone, et al., Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes. J. Micromech. Microeng. (2016). https://doi.org/10.1088/0960-1317/26/8/084005.

  • A. Page, T. Soyata, J. Couderc, et al., An open source ECG clock generator for visualization of long-term cardiac monitoring data. IEEE Access (2015). https://doi.org/10.1109/ACCESS.2015.2509426.

  • W. Pei, H. Zhang, Y. Wang et al., “Skin-potential variation insensitive dry electrodes for ECG recording”, IEEE T. Bio.-Med. Eng. 64(2), 463–470 (2017)

    Google Scholar 

  • M.R. Prausnitz, Microneedles for transdermal drug delivery. Adv. Drug Deliver. Rev. 56(5), 581–587 (2004)

    Article  Google Scholar 

  • L. Ren, Q. Jiang, Z. Chen, et al., Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sensor. Actuat. A-Phys. (2017). https://doi.org/10.1016/j.sna.2017.10.042.

  • L. Ren, S. Xu, J. Gao, et al., Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors-Basel. (2018). https://doi.org/10.3390/s18041191.

  • P. Salvo, R. Raedt, E. Carrette, et al., A 3D printed dry electrode for ECG/EEG recording. Sensor. Actuat. A-Phys. (2012). https://doi.org/10.1016/j.sna.2011.12.017.

  • M.D. Serruya, N.G. Hatsopoulos, L. Paninski et al., Instant neural control of a movement signal. Nature 416(6877), 141–142 (2002)

    Article  Google Scholar 

  • Y. Sun, L. Ren, L. Jiang, et al., Fabrication of composite microneedle array electrode for temperature and bio-signal monitoring. Sensors-Basel. (2018). https://doi.org/10.3390/s18041193.

  • L. Wang, W. Dou, J. Chen, K. Lu, F. Zhang, M. Abdulaziz, W. Su, A. Li, C. Xu, Y. Sun, A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. Mat. Sci. Eng. C Mater. 117, 111345 (2020)

    Article  Google Scholar 

  • L. Wang, J. Liu, B. Yang et al., PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sens. J. 12(9), 2898–2904 (2012)

    Article  Google Scholar 

  • P. Wang, S. Paik, S. Kim et al., Hypodermic-needle-like hollow polymer microneedle array: fabrication and characterization. J. Microelectromech. S. 23(4), 991–998 (2014)

    Article  Google Scholar 

  • R. Wang, W. Zhao, W. Wang et al., A flexible microneedle electrode array with solid silicon needles. J. Microelectromech. S. 21(5), 1084–1089 (2012)

    Article  Google Scholar 

  • R. Wang, X. Jiang, W. Wang, et al., A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sensor. Actuat. B-Chem. (2017). https://doi.org/10.1016/j.snb.2017.01.052.

  • R. Wang, X. Huang, G. Liu et al., Fabrication and characterization of a parylene-based three-dimensional microelectrode array for use in retinal prosthesis. J. Microelectromech. S. 19(2), 367–374 (2010)

    Article  Google Scholar 

  • R.H. Wildnauer, J.W. Bothwell, A.B. Douglass, Stratum corneum biomechanical properties. I. Influence of relative humidity on normal and extracted human stratum corneum. J. Invest. Dermatol. 56(1), 72–78 (1971)

    Article  Google Scholar 

  • H. Zhang, W. Pei, Y. Chen et al., “A motion interference-insensitive flexible dry electrode”, IEEE T. Bio.-Med. Eng. 63(6), 1136–1144 (2016)

    Google Scholar 

Download references

Funding

This work was supported in part by the National Key Research and Development Program of China (Grant 2020YFC0122102), the National Natural Science Foundation (Grant No. 51875535, Grant No.61927807), the Fund for Shanxi ‘1331 Project’ Key Subject Construction (1331KSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Bai, J., Zhu, X. et al. A PDMS-based microneedle array electrode for long-term ECG recording. Biomed Microdevices 24, 27 (2022). https://doi.org/10.1007/s10544-022-00626-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-022-00626-y

Keywords

Navigation