Skip to main content

Advertisement

Log in

Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) typically evolves over many years in a latent period without clinical signs, posing key challenges to detection at relatively early stages of the disease. Accurate and timely diagnosis of CKD enable effective management of the disease and may prevent further progression. However, long turn-around times of current testing methods combined with their relatively high cost due to the need for established laboratory infrastructure, specialized instrumentation and trained personnel are drawbacks for efficient assessment and monitoring of CKD, especially in underserved and resource-poor locations. Among the emerging clinical laboratory approaches, microfluidic technology has gained increasing attention over the last two decades due to the possibility of miniaturizing bioanalytical assays and instrumentation, thus potentially improving diagnostic performance. In this article, we review current developments related to the detection of CKD biomarkers using microfluidics. A general trend in this emerging area is the search for novel, sensitive biomarkers for early detection of CKD using technology that is improved by means of microfluidics. It is anticipated that these innovative approaches will be soon adopted and utilized in both clinical and point-of-care settings, leading to improvements in life quality of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • P. Aldo, G. Marusov, D. Svancara, et al., Simple Plex™: A novel multi-analyte, automated microfluidic immunoassay platform for the detection of human and mouse cytokines and chemokines. Am. J. Reprod. Immunol. 75, 678–693 (2016)

    Google Scholar 

  • M. Arici, J. Walls, End stage renal disease, atherosclerosis, and cardiovascular mortality: Is C-reactive protein the missing link? Kidney Int. 59, 407–417 (2001)

    Google Scholar 

  • M. Ávila, A. Floris, S. Staal, et al., Point of care creatinine measurement for diagnosis of renal disease using a disposable microchip. Electrophoresis 34, 2956–2961 (2013)

    Google Scholar 

  • C. Aybay, R. Karakuş, Measurement of urine albumin levels with a monoclonal antibody based in-house ELISA. Turk. J. Med. Sci. 33, 1–5 (2003)

    Google Scholar 

  • N. Babic, T.S. Larson, S.K. Grebe, et al., Application of liquid chromatography–mass spectrometry technology for early detection of microalbuminuria in patients with kidney disease. Clin. Chem. 52, 2155–2157 (2006)

    Google Scholar 

  • S. Baratchi, K. Khoshmanesh, C. Sacristán, et al., Immunology on chip: Promises and opportunities. Biotechnol. Adv. 32, 333–346 (2014)

    Google Scholar 

  • B. Bikbov, N. Perico, G. Remuzzi, on behalf of the GBD Genitourinary Diseases Expert Group, Disparities in chronic kidney disease prevalence among males and females in 195 countries: Analysis of the global burden of disease 2016 study. Nephron 139, 313–318 (2018)

    Google Scholar 

  • D. Bolignano, V. Donato, G. Coppolino, et al., Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 52, 595–605 (2008)

    Google Scholar 

  • J.V. Bonventre, Kidney injury molecule-1: A translational journey. Trans. Am. Clin. Climatol. Assoc. 125, 293–299 (2014)

    Google Scholar 

  • J.V. Bonventre, V.S. Vaidya, R. Schmouder, et al., Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010)

    Google Scholar 

  • D. Brassard, L. Clime, M. Mounier, T. Veres, Programmable aliquots in passive microfluidic devices using a centrifugal platform with active pneumatic pumping. Proc. 20th Int. Conf. Miniat. Syst. Chem. Life Sci. (MicroTAS 2016) pp. 31–32 (2016)

  • D. Brassard, M. Geissler, M. Descarreaux, et al., Extraction of nucleic acids from blood: Unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. Lab Chip 19, 1941–1952 (2019)

    Google Scholar 

  • C. Carrell, A. Kava, M. Nguyen, et al., Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 206, 45–54 (2019)

    Google Scholar 

  • E. Carrilho, A.W. Martinez, G.M. Whitesides, Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009)

    Google Scholar 

  • D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry, Recent developments in paper-based microfluidic devices. Anal. Chem. 87, 19–41 (2015)

    Google Scholar 

  • O.T.M. Chan, D.A. Herold, Chip electrophoresis as a method for quantifying total microalbuminuria. Clin. Chem. 52, 2141–2146 (2006)

    Google Scholar 

  • H.N. Chan, Y. Shu, B. Xiong, et al., Simple, cost-effective 3D printed microfluidic components for disposable, point-of-care colorimetric analysis. ACS Sens. 1, 227–234 (2015)

    Google Scholar 

  • B.M. Chavers, J. Simonson, A.F. Michael, A solid phase fluorescent immunoassay for the measurement of human urinary albumin. Kidney Int. 25, 576–578 (1984)

    Google Scholar 

  • H.J. Chung, K.L. Pellegrini, J.H. Chung, et al., Nanoparticle detection of urinary markers for point-of-care diagnosis of kidney injury. PLoS One 10, e0133417 (2015)

    Google Scholar 

  • L. Clime, D. Brassard, M. Geissler, T. Veres, Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15, 2400–2411 (2015)

    Google Scholar 

  • L. Clime, J. Daoud, D. Brassard, L. Malic, M. Geissler, T. Veres, Active pumping and control of flows in centrifugal microfluidics. Microfluid. Nanofluid. 23, 29 (2019)

    Google Scholar 

  • W.D. Comper, G. Jerums, T.M. Osicka, Differences in urinary albumin detected by four immunoassays and high-performance liquid chromatography. Clin. Biochem. 37, 105–111 (2004)

    Google Scholar 

  • P. Connolly, Clinical diagnostics opportunities for biosensors and bioelectronics. Biosens. Bioelectron. 10, 1–6 (1995)

    Google Scholar 

  • A.F. Coskun, R. Nagi, K. Sadeghi, et al., Albumin testing in urine using a smart-phone. Lab Chip 13, 4231–4238 (2013)

    Google Scholar 

  • P.K. Dabla, Renal function in diabetic nephropathy. World J. Diabetes 1, 48–56 (2010)

    Google Scholar 

  • G. D'Amico, C. Bazzi, Pathophysiology of proteinuria. Kidney Int. 63, 809–825 (2003)

    Google Scholar 

  • G. D'Amico, F. Ferrario, M.P. Rastaldi, Tubulo-interstitial damage in glomerular diseases: Its role in the progression of renal damage. Am. J. Kidney Dis. 26, 124–132 (1995)

    Google Scholar 

  • J.A.M. de Carvalho, E. Tatsch, B.S. Hausen, et al., Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin. Biochem. 49, 232–236 (2016)

    Google Scholar 

  • S.L. Deshmane, S. Kremlev, S. Amini, B.E. Sawaya, Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine Res. 29, 313–326 (2009)

    Google Scholar 

  • M. Dong, J. Wu, Z. Ma, et al., Rapid and low-cost CRP measurement by integrating a paper-based microfluidic immunoassay with smartphone (CRP-Chip). Sensors 17, 684 (2017)

    Google Scholar 

  • M. Dysinger, G. Marusov, S. Fraser, Quantitative analysis of four protein biomarkers: An automated microfluidic cartridge-based method and its comparison to colorimetric ELISA. J. Immunol. Methods 451, 1–10 (2017)

    Google Scholar 

  • R.G. Fassett, S.K. Venuthurupalli, G.C. Gobe, et al., Biomarkers in chronic kidney disease: A review. Kidney Int. 80, 806–821 (2011)

    Google Scholar 

  • A. Floris, S. Staal, S. Lenk, et al., A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. Lab Chip 10, 1799–1806 (2010)

    Google Scholar 

  • D. Gaddes, W.B. Reeves, S. Tadigadapa, A calorimetric biosensing system for quantification of urinary creatinine. ACS Sens. 2, 796–802 (2017)

    Google Scholar 

  • V. Garg, M. Kumar, H.S. Mahapatra, et al., Novel urinary biomarkers in pre-diabetic nephropathy. Clin. Exp. Nephrol. 19, 895–900 (2015)

    Google Scholar 

  • L. Gervais, N. de Rooij, E. Delamarche, Microfluidic chips for point-of-care immunodiagnostics. Adv. Mater. 23, H151–H176 (2011)

    Google Scholar 

  • C. Gluhovschi, G. Gluhovschi, L. Petrica, et al., Urinary biomarkers in the assessment of early diabetic nephropathy. J. Diabetes Res. 2016, 4626125 (2016)

    Google Scholar 

  • M.M. Gong, D. Sinton, Turning the page: Advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 117, 8447–8480 (2017)

    Google Scholar 

  • A.O. Grubb, Cystatin C—Properties and use as diagnostic marker. Adv. Clin. Chem. 35, 63–99 (2000)

    Google Scholar 

  • W.K. Han, V. Bailly, R. Abichandani, et al., Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 62, 237–244 (2002)

    Google Scholar 

  • S. Hanif, P. John, W. Gao, et al., Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens. Bioelectron. 75, 347–351 (2016)

    Google Scholar 

  • O. Hofmann, X. Wang, J.C. deMello, et al., Towards microalbuminuria determination on a disposable diagnostic microchip with integrated fluorescence detection based on thin-film organic light emitting diodes. Lab Chip 5, 863–868 (2005)

    Google Scholar 

  • T.H. Hostetter, Hyperfiltration and glomerulosclerosis. Semin. Nephrol. 23, 194–199 (2003)

    Google Scholar 

  • C.J. Huang, J.L. Lin, P.H. Chen, et al., A multi-functional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine. Electrophoresis 32, 931–938 (2011)

    Google Scholar 

  • B.D. Humphreys, F. Xu, V. Sabbisetti, Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 123, 4023–4035 (2013)

    Google Scholar 

  • T. Huynh, B. Sun, L. Li, et al., Chemical analog-to-digital signal conversion based on robust threshold chemistry and its evaluation in the context of microfluidics-based quantitative assays. J. Am. Chem. Soc. 135, 14775–14783 (2013)

    Google Scholar 

  • M. Jaffe, Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Z. Physiol. Chem. 10, 391–400 (1886)

    Google Scholar 

  • Y.K. Jeon, M.R. Kim, J.E. Huh, et al., Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. J. Korean Med. Sci. 26, 258–263 (2011)

    Google Scholar 

  • M.A. Kessler, A. Meinitzer, O.S. Wolfbeis, Albumin blue 580 fluorescence assay for albumin. Anal. Biochem. 248, 180–182 (1997)

    Google Scholar 

  • Kidney injury molecule-1 (KIM-1). HyTest, Turku, Finland (2012). Available at https://www.hytest.fi/. Accessed on 20 Nov 2019

  • L. Kim, in Microfluidic Diagnostics – Methods and Protocols, ed. by G. Jenkins, C.D. Mansfield. Overview of the microfluidic diagnostics commercial landscape, vol 949 (Humana Press, Totowa, 2013), pp. 65–83

    Google Scholar 

  • K. Kolari, Fabrication of silicon and glass devices for microfluidic bioanalytical applications. VTT Publications 670, VTT Technical Research Centre of Finland, Espoo, Finland (2007)

  • C.S. Kosack, A.L. Page, P.R. Klatser, A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 95, 639–645 (2017)

    Google Scholar 

  • G.S. Kuncio, E.G. Neilson, T. Haverty, Mechanisms of tubulointerstitial fibrosis. Kidney Int. 39, 550–556 (1991)

    Google Scholar 

  • J. Kyhse-Andersen, C. Schmidt, G. Nordin, et al., Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin. Chem. 40, 1921–1926 (1994)

    Google Scholar 

  • W.G. Lee, Y.G. Kim, B.G. Chung, et al., Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Deliv. Rev. 62, 449–457 (2010)

    Google Scholar 

  • A.S. Levey, Measurement of renal function in chronic renal disease. Kidney Int. 38, 167–184 (1990)

    Google Scholar 

  • A. Levin, P.E. Stevens, R.W. Bilous, et al., Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013)

    Google Scholar 

  • C.C. Lin, C.C. Tseng, C.J. Huang, et al., An integrated microfluidic chip for non-immunological determination of urinary albumin. Biomed. Microdevices 12, 887–896 (2010)

    Google Scholar 

  • Y.H. Lin, S.J. Wang, M.H. Wu, et al., Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads. Biosens. Bioelectron. 43, 328–335 (2013)

    Google Scholar 

  • C.Y. Liu, J. Rick, T.C. Chou, et al., Integrated microfluidic system for electrochemical sensing of urinary proteins. Biomed. Microdevices 11, 201–211 (2009)

    Google Scholar 

  • R.C. Lo, Microfluidics technology: Future prospects for molecular diagnostics. Adv. Health Care Technol. 3, 3–17 (2017)

    Google Scholar 

  • S. Lopez-Giacoman, M. Madero, Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 4, 57–73 (2015)

    Google Scholar 

  • L. Malic, K. Morton, L. Clime, T. Veres, All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing. Lab Chip 13, 798–810 (2013)

    Google Scholar 

  • D. Mark, S. Haeberle, G. Roth, et al., Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153–1182 (2010)

    Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, et al., Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21, 27–40 (2000)

  • J. Melin, S.R. Quake, Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Google Scholar 

  • G.G. Morbioli, T. Mazzu-Nascimento, A.M. Stockton, E. Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Anal. Chim. Acta 970, 1–22 (2017)

    Google Scholar 

  • S. Nahavandi, S. Baratchi, R. Soffe, et al., Microfluidic platforms for biomarker analysis. Lab Chip 14, 1496–1514 (2014)

    Google Scholar 

  • B.J. Nankivell, Creatinine clearance and the assessment of renal function. Aust. Prescr. 24, 15–17 (2001)

    Google Scholar 

  • J.F. Navarro, C. Mora, M. Gómez, et al., Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-α and interleukin-6 in type 2 diabetic patients. Nephrol. Dial. Transplant. 23, 919–926 (2008)

    Google Scholar 

  • D.J. Newman, H. Thakkar, R.G. Edwards, et al., Serum cystatin C measured by automated immunoassay: A more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 47, 312–318 (1995)

    Google Scholar 

  • I.L. Noronha, C.K. Fujihara, R. Zatz, The inflammatory component in progressive renal disease—Are interventions possible? Nephrol. Dial. Transplant. 17, 363–368 (2002)

    Google Scholar 

  • A. Pal, H.E. Cuellar, R. Kuang, et al., Self-powered, paper-based electrochemical devices for sensitive point-of-care testing. Adv. Mater. Technol. 2, 1700130 (2017)

    Google Scholar 

  • R. Paroni, I. Fermo, G. Cighetti, et al., Creatinine determination in serum by capillary electrophoresis. Electrophoresis 25, 463–468 (2004)

    Google Scholar 

  • V. Pennemans, J.M. Rigo, C. Faes, et al., Establishment of reference values for novel urinary biomarkers for renal damage in the healthy population: Are age and gender an issue? Clin. Chem. Lab. Med. 51, 1795–1802 (2013)

    Google Scholar 

  • L. Petrica, A. Vlad, G. Gluhovschi, et al., Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: A cross-sectional study. PLoS One 9, e112538 (2014)

    Google Scholar 

  • S.E. Quaggin, J.A. Kreidberg, Development of the renal glomerulus: Good neighbors and good fences. Development 135, 609–620 (2008)

    Google Scholar 

  • T.J. Rabelink, H.J.L. Heerspink, D. de Zeeuw, in Chronic Renal Disease, ed. by P.L. Kimmel, M.E. Rosenberg. Chapter 9 - The pathophysiology of proteinuria (Academic Press, London, 2015), pp. 92–105

    Google Scholar 

  • E.L. Rossini, M.I. Milani, E. Carrilho, et al., Simultaneous determination of renal function biomarkers in urine using a validated paper-based microfluidic analytical device. Anal. Chim. Acta 997, 16–23 (2018)

    Google Scholar 

  • E. Roy, J.-C. Galas, T. Veres, Thermoplastic elastomers for microfluidics: Towards a high-throughput fabrication method of multilayered microfluidic devices. Lab Chip 11, 3193–3196 (2011)

    Google Scholar 

  • P. Ruggenenti, F. Gaspari, A. Cannata, et al., Measuring and estimating GFR and treatment effect in ADPKD patients: Results and implications of a longitudinal cohort study. PLoS One 7, e32533 (2012)

    Google Scholar 

  • J. Rysz, A. Gluba-Brzózka, B. Franczyk, et al., Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int. J. Mol. Sci. 18, 1702 (2017)

    Google Scholar 

  • R. Safavieh, D. Juncker, Capillarics: Pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip 13, 4180–4189 (2013)

    Google Scholar 

  • S.T. Sanjay, G. Fu, M. Dou, et al., Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140, 7062–7081 (2015)

    Google Scholar 

  • S. Segerer, The role of chemokines and chemokine receptors in progressive renal diseases. Am. J. Kidney Dis. 41, S15–S18 (2003)

    Google Scholar 

  • M.D. Shephard, Point-of-care testing and creatinine measurement. Clin. Biochem. Rev. 32, 109–114 (2011)

    Google Scholar 

  • M.G. Shlipak, M.J. Sarnak, R. Katz, et al., Cystatin C and the risk of death and cardiovascular events among elderly persons. N. Engl. J. Med. 352, 2049–2060 (2005)

    Google Scholar 

  • M. Shoji, K. Kobayashi, M. Takemoto, et al., Urinary podocalyxin levels were associated with urinary albumin levels among patients with diabetes. Biomarkers 21, 164–167 (2015)

    Google Scholar 

  • Simple Plex assay for the detection of rat lipocalin-2 in serum, EDTA plasma, and urine. ProteinSimple, San Jose, CA (2018). Available at https://www.proteinsimple.com/. Accessed on 20 Nov 2019

  • Simple Plex assay for the detection of human monocyte chemotactic protein 1 (MCP-1) in cell culture supernatant (CCS), serum, plasma (EDTA/heparin), and cerebrospinal fluid (CSF). ProteinSimple, San Jose, CA (2019a). Available at https://www.proteinsimple.com/. Accessed on 20 Nov 2019

  • Simple Plex assay for the detection of human lipocalin-2 in serum, plasma (EDTA/heparin), cerebrospinal fluid (CSF). ProteinSimple, San Jose, CA (2019b). Available at https://www.proteinsimple.com/. Accessed on 20 Nov 2019

  • Simple Plex assay for the detection of mouse and rat cystatin C in serum, EDTA plasma, and urine. ProteinSimple, San Jose, CA (2019c). Available at https://www.proteinsimple.com/. Accessed on 20 Nov 2019

  • T. Songjaroen, T. Maturos, A. Sappat, et al., Portable microfluidic system for determination of urinary creatinine. Anal. Chim. Acta 647, 78–83 (2009)

    Google Scholar 

  • C.D.A. Stehouwer, Y.M. Smulders, Microalbuminuria and risk for cardiovascular disease: Analysis of potential mechanisms. J. Am. Soc. Nephrol. 17, 2106–2111 (2006)

    Google Scholar 

  • D. Steubl, M. Block, V. Herbst, et al., Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine 95, e3011 (2016)

    Google Scholar 

  • O. Strohmeier, M. Keller, F. Schwemmer, et al., Centrifugal microfluidic platforms: Advanced unit operations and applications. Chem. Soc. Rev. 44, 6187–6229 (2015)

    Google Scholar 

  • S. Sununta, P. Rattanarat, O. Chailapakul, et al., Microfluidic paper-based analytical devices for determination of creatinine in urine samples. Anal. Sci. 34, 109–113 (2018)

    Google Scholar 

  • F.W.K. Tam, A.C.M. Ong, Renal monocyte chemoattractant protein-1: An emerging universal biomarker and therapeutic target for kidney diseases? Nephrol. Dialy. Transpl. gfz082 (2019)

  • M. Tang, G. Wang, S.-K. Kong, H.-P. Ho, A review of biomedical centrifugal microfluidic platforms. Micromachines 7, 26 (2016)

    Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Google Scholar 

  • H.R. Vianna, C.M. Bouissou, M. Soares, et al., Cytokines in chronic kidney disease: Potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr. Nephrol. 28, 463–469 (2013)

    Google Scholar 

  • T. Wada, K. Furuichi, N. Sakai, et al., Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 58, 1492–1499 (2000)

    Google Scholar 

  • C. Wang, C.C. Li, W.Y. Gong, et al., New urinary biomarkers for diabetic kidney disease. Biomark. Res. 1, 9 (2013)

    Google Scholar 

  • A.B. Wang, P.H. Fang, Y.C. Su, et al., A novel lab-on-a-chip design by sequential capillary–gravitational valves for urinary creatinine detection. Sensors Actuators B Chem. 222, 721–727 (2016)

    Google Scholar 

  • M.E. Wasung, L.S. Chawla, M. Madero, Biomarkers of renal function, which and when? Clin. Chim. Acta 438, 350–357 (2015)

    Google Scholar 

  • J.A. Weber, A.P. van Zanten, Interferences in current methods for measurements of creatinine. Clin. Chem. 37, 695–700 (1991)

    Google Scholar 

  • G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Google Scholar 

  • L.L. Wu, C.C. Chiou, P.Y. Chang, J.T. Wu, Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 339, 1–9 (2004)

    Google Scholar 

  • T.L. Wu, P.Y. Chang, C.C. Li, et al., Microplate ELISA for urine microalbumin: Reference values and results in patients with type 2 diabetes and cardiovascular disease. Ann. Clin. Lab. Sci. 35, 149–154 (2005)

    Google Scholar 

  • J. Wu, M. Dong, C. Rigatto, et al., Lab-on-chip technology for chronic disease diagnosis. Digital Med. 1, 7 (2018a)

    Google Scholar 

  • J. Wu, D. Tomsa, M. Zhang, et al., A passive mixing microfluidic urinary albumin chip for chronic kidney disease assessment. ACS Sens. 3, 2191–2197 (2018b)

    Google Scholar 

  • P. Yager, T. Edwards, E. Fu, et al., Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)

    Google Scholar 

  • M.F. Yuyun, A.I. Adler, N.J. Wareham, What is the evidence that microalbuminuria is a predictor of cardiovascular disease events? Curr. Opin. Nephrol. Hypertens. 14, 271–276 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan-Zhi Liu.

Ethics declarations

Competing interests

The authors have declared that no competing interests exist.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KZ., Tian, G., Ko, A.CT. et al. Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities. Biomed Microdevices 22, 29 (2020). https://doi.org/10.1007/s10544-020-00484-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00484-6

Keywords

Navigation