Skip to main content
Log in

Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hübner, J. Micromechanical Microeng. 16, 1819 (2006)

    Article  Google Scholar 

  • S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa, Sensors Actuators A Phys. 139, 293–302 (2007)

    Article  Google Scholar 

  • A.J. Bard, L.R. Faulkner, Electrochem. Methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  • H. Becker, U. Heim, Sensors Actuators A Phys. 83, 130–135 (2000)

    Article  Google Scholar 

  • L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, et al., Physiol. Meas. 31, 233 (2010)

    Article  Google Scholar 

  • M.B. Chan-Park, J. Zhang, Y. Yan, C. Yue, Sensors Actuators B Chem. 101, 175–182 (2004)

    Article  Google Scholar 

  • J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, J.-L. Jeng, Using novel MEMS EEG sensors in detecting drowsiness application, in Biomedical circuits and systems conference, 2006. BioCAS 2006 (IEEE, 2006), 33–36 (2006)

  • Y.A. Chizmadzhev, A.V. Indenbom, P.I. Kuzmin, S.V. Galichenko, J.C. Weaver, R.O. Potts, J. Biophysics. 74, 843–856 (1998)

    Article  Google Scholar 

  • S.F. Cogan, Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  • W. Dai, K. Lian, W. Wang, J. Microsyst. Technol. 11, 526–534 (2005)

    Article  Google Scholar 

  • T.P. DeMonte, P.D. Gadsby, P.F. Meyer, M.L. Joy, Measurement of edge effects in automatic external defibrillation electrodes using current density imaging, in Proc. 13th Annu. ISMRM Int. Conf. (2005)

  • P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, G. Stemme, J. Microelectromech. Syst. 10, 10–16 (2001)

    Article  Google Scholar 

  • P. Griss, H.K. Tolvanen-Laakso, P. Merilainen, G. Stemme, IEEE Trans. Biomed. Eng. 49, 597–604 (2002)

    Article  Google Scholar 

  • G.S. Guvanasen, L. Guo, R.J. Aguilar, A.L. Cheek, C.S. Shafor, et al., IEEE Trans. Neural Eng. Rehab. (2016). https://doi.org/10.1109/TNSRE.2016.2629461

  • M. Han, D.-H. Hyun, H.-H. Park, S.S. Lee, C.-H. Kim, C. Kim, J. Micromechanical Microeng. 17, 1184 (2007)

    Article  Google Scholar 

  • C.Y. Jin, M.H. Han, S.S. Lee, Y.H. Choi, Biomed. Microdevices 11, 1195–1203 (2009)

    Article  Google Scholar 

  • T. Keller, A. Kuhn, J. Autom. Control. 18, 35–45 (2008)

    Article  Google Scholar 

  • K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.-B. Lee, et al., J. Micromechanical Microeng. 14, 597 (2004)

    Article  Google Scholar 

  • A. Kuhn, T. Keller, M. Lawrence, M. Morari, J. Medical & Biological Engineering & Computing. 47, 279 (2009)

    Article  Google Scholar 

  • C. Liu, Adv. Mater. 19, 3783–3790 (2007)

    Article  Google Scholar 

  • T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, J. Optial Rev. 3, 223–229 (2010)

    Article  Google Scholar 

  • M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, et al., Microelectron. Eng. 84, 1737–1740 (2007)

    Article  Google Scholar 

  • E. McAdams, in Integrated Circuits and Systems, ed. By H. J. Yoo, C. van Hoof (Springer, New York, 2011), p. 31

  • E. McAdams, J. Jossinet, EMBS Conf. 13, 1728–1729 (1991)

    Google Scholar 

  • E. McAdams, A. Lackermeier, J. McLaughlin, D. Macken, J. Jossinet, Biosens. Bioelectron. 10, 67–74 (1995)

    Article  Google Scholar 

  • D.B. McCreery, W.F. Agnew, T.G. Yuen, L. Bullara, IEEE Trans. Biomed. Eng. 37, 996–1001 (1990)

    Article  Google Scholar 

  • D.R. Merrill, M. Bikson, J.G. Jefferys, J. Neurosci. Methods 141, 171–198 (2005)

    Article  Google Scholar 

  • K.L. Mittal, Adhesion measurement of thin films. ElectroComponent Science and Technology 3(1), 21–42 (1976)

  • H. W. Moses, J. C. Mullin, A practical guide to cardiac pacing. Lippincott Williams & Wilkins (2007)

  • K.V. Nemani, K.L. Moodie, J.B. Brennick, A. Su, B. Gimi, J. Mater. Sci. Eng. 33, 4453–4459 (2013)

    Article  Google Scholar 

  • A. Norlin, J. Pan, C. Leygraf, Biomol. Eng. 19, 67–71 (2002)

    Article  Google Scholar 

  • T.I. Oh, H. Koo, K.H. Lee, S.M. Kim, J. Lee, S.W. Kim, et al., Physiol. Meas. 29, 295 (2008)

    Article  Google Scholar 

  • J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, IEEE Trans. Biomed. Eng. 54, 903–913 (2007)

    Article  Google Scholar 

  • V. Parker, J. Warman Chardon, J. Mills, C. Goldsmith, P. R. Bourque, (2016). https://doi.org/10.1155/2016/6796270

  • J.N. Patel, B. Kaminska, B.L. Gray, B.D. Gates, J. Micromechanical Microeng. 18, 095028 (2008)

    Article  Google Scholar 

  • A.M. Ribeiro, T.H. Flores-Sahagun, R.C. Paredes, J. Mater. Sci. 51, 2806–2816 (2016)

    Article  Google Scholar 

  • M. Sawan, F. Mounaim, G. Lesbros, Analog Integr. Circ. Sig. Process 55, 103–114 (2008)

    Article  Google Scholar 

  • M. Schaldach, M. Hubmann, A. Weikl, R. Hardt, Pacing Clin. Electrophysiol. 13, 1891–1895 (1990)

    Article  Google Scholar 

  • T.M. Suhonen, J.A. Bouwstra, A. Urtti, J. Control. Release 59, 149–161 (1999)

    Article  Google Scholar 

  • Y.K. Yoon, J.H. Park, M.G. Allen, J. Microelectromech. Syst. 15, 1121–1130 (2006)

    Article  Google Scholar 

  • L. Yu, F. Tay, D. Guo, L. Xu, K. Yap, Sensors Actuators A Phys. 151, 17–22 (2009)

    Article  Google Scholar 

  • D. Zhou, R. Greenberg, 25th EMBS Conf. (2003). https://doi.org/10.1109/IEMBS.2003.1279831

Download references

Acknowledgements

This study was funded by CMC Microsystems (MNT # 3923). The fabrication process was done in Nano-Systems Fabrication Laboratory at the University of Manitoba. The authors declare no commercial or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Soltanzadeh.

Additional information

This article is part of the Topical Collection on Biomedical MicroNeedles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanzadeh, R., Afsharipour, E., Shafai, C. et al. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation. Biomed Microdevices 20, 1 (2018). https://doi.org/10.1007/s10544-017-0241-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0241-9

Keywords

Navigation