Skip to main content
Log in

Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Needle-free liquid jet injectors are devices developed for the delivery of pharmaceutical solutions through the skin. In this paper, we investigated for the first time the ability of these devices to deliver intact lipid vesicles. Diclofenac sodium loaded phospholipid vesicles of two types, namely liposomes and transfersomes, were prepared and fully characterized. The lipid vesicles were delivered through a skin specimen using a jet injector and the collected samples were analyzed to assess vesicle structural integrity, drug retention and release kinetics after the injection. In this regard, data concerning size, size distribution, surface charge of vesicles and bilayer integrity and thickness, before and after the injections, were measured by dynamic light scattering experiments, cryo-electron microscopy, and X-ray scattering techniques. Finally, the effect of vesicle fast jet injection through the skin on drug release kinetics was checked by in vitro experiments. The retention of the morphological, physico-chemical, and technological features after injection, proved the integrity of vesicles after skin crossing as a high-speed liquid jet. The delivery of undamaged vesicular carriers beneath the skin is of utmost importance to create a controlled release drug depot in the hypoderm, which may be beneficial for several localized therapies. Overall results reported in this paper may broaden the range of application of liquid jet injectors to lipid vesicle based formulations thus combining beneficial performance of painless devices with those of liposomal drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • T. M. Allen, P. R. Cullis, Adv. Drug Deliv. Rev. 65, 36–48 (2013)

    Article  Google Scholar 

  • A. Arora, M. R. Prausnitzc, S. Mitragotri, Int. J. Pharm. 364, 227–236 (2008)

    Article  Google Scholar 

  • J. Baxter, S. Mitragotri, Expert Rev. Med. Devices 3, 565–574 (2006)

    Article  Google Scholar 

  • C. Caddeo, M. Manconi, A. M. Fadda, F. Lai, S. Lampis, O. Diez Sales, C. Sinico, Colloids Surf. B: Biointerfaces 11, 327–332 (2013)

    Article  Google Scholar 

  • G. Cevc, G. Blume, Biochim. Biophys. Acta 1663, 61–73 (2004)

    Article  Google Scholar 

  • F. Cilurzo, P. Minghetti, C. Sinico, AAPS PharmSciTech 8, art. 94 (2007)

  • D. Cosco, C. Celia, F. Cilurzo, E. Trapasso, D. Paolino, Expert Opin. Drug Deliv. 5, 737–755 (2008)

    Article  Google Scholar 

  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, N. M. Khalafallah, Int. J. Pharm. 332, 1–16 (2007)

    Article  Google Scholar 

  • C. F. Goh, M. E. Lane, Int. J. Pharm. 473, 607–616 (2014)

    Article  Google Scholar 

  • G. Gregoriadis, Liposome technology, 2nd ed (CRC press, London, 1993)

    Google Scholar 

  • M. Harris, R. Joy, G. Larsen, M. Valyi, E. Walker, L.W. Frick, R.M. Palmatier, S.A. Wring, J.S. Montaner AIDS 20, 719–723 (2006)

  • D. Leng, H. Chen, G. Li, M. Guo, Z. Zhu, L. Xu, Y. Wang, Int. J. Pharm. 472(1-2), 380–385 (2014)

    Article  Google Scholar 

  • Y. Michinaka, S. Mitragotri, J. Control. Release 153, 249–254 (2011)

    Article  Google Scholar 

  • S. Mitragotri, Nat. Rev. Drug Discov. 5, 543–548 (2006)

    Google Scholar 

  • S. Murgia, A. M. Falchi, M. Carboni, S. Lampis, C. Sinico, M. L. Manca, J. Schmidt, Y. Talmon, M. Monduzzi, Adv. Healthcare Mater. 2, 692–701 (2013)

    Article  Google Scholar 

  • B. Ozbakir, B. J. Crielaard, J. M. Metselaar, G. Storm, T. Lammers, J. Control. Release 190, 624–636 (2014)

    Article  Google Scholar 

  • G. Pabst, M. Rappolt, H. Amenitsch, P. Laggner, Phys. Rev. E 62, 4000–4009 (2000)

    Google Scholar 

  • J. Pan, S. Tristram-Nagle, N. Kučerka, J. F. Nagle, Biophys. J. 94, 117–124 (2008)

    Article  Google Scholar 

  • J. Schramm-Baxter, S. Mitragotri, J. Control. Release 97, 527–535 (2004)

    Article  Google Scholar 

  • C. Sinico, A. M. Fadda, Expert Opin. Drug Deliv. 6, 813–825 (2009)

    Article  Google Scholar 

  • C. Sinico, D. Valenti, M. Manconi, F. Lai, A. M. Fadda, J. Drug Deliv, Sci. Technol. 16, 115–120 (2006)

    Google Scholar 

  • Y. Talmon, J. Mol. Liq. 210, 2–8 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Yeshayahu Talmon and Judith Schmidt are kindly thanked for the cryo-TEM images. The cryo-TEM work was performed at the Technion Laboratory for Electron Microscopy of Soft matter, supported by the Technion Russell Berrie Nanotechnology Institute (RBNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Sinico.

Ethics declarations

Grants

This work was partially supported by a grant from MIUR, Italy (PRIN 2010–2011, Prot. 2010H834LS 004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlich, M., Lai, F., Murgia, S. et al. Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study. Biomed Microdevices 18, 67 (2016). https://doi.org/10.1007/s10544-016-0098-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0098-3

Keywords

Navigation