Skip to main content
Log in

Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Lab Chip 9, 2628–2631 (2009)

    Article  Google Scholar 

  • A.R. Abate, J.J. Agresti, D.A. Weitz, Appl. Phys. Lett. 96, 203509 (2010)

    Article  Google Scholar 

  • K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Appl. Phys. Lett. 88, 024104 (2006)

    Article  Google Scholar 

  • S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)

    Article  Google Scholar 

  • L. Baraban, F. Bertholle, M.L.M. Salverda, N. Bremond, P. Panizza, J. Baudry, J. de Visser, J. Bibette, Lab Chip 11, 4057–4062 (2011)

    Article  Google Scholar 

  • J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Lab Chip 9, 1850–1858 (2009)

    Article  Google Scholar 

  • C.N. Baroud, J.P. Delville, F. Gallaire, R. Wunenburger, Phys. Rev. E 75, 046302 (2007)

    Article  Google Scholar 

  • J.Q. Boedicker, L. Li, T.R. Kline, R.F. Ismagilov, Lab Chip 8, 1265–1272 (2008)

    Article  Google Scholar 

  • E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels, Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009)

    Article  Google Scholar 

  • M. Chabert, J.L. Viovy, Proc. Natl. Acad. Sci. U. S. A. 105, 3191–3196 (2008)

    Article  Google Scholar 

  • P. Chen, X. Feng, W. Du, B.F. Liu, Front. Biosci. 13, 2464–2483 (2008)

    Article  Google Scholar 

  • P. Chen, X. Feng, R. Hu, J. Sun, W. Du, B.-F. Liu, Anal. Chim. Acta 663, 1–6 (2010a)

    Article  Google Scholar 

  • P. Chen, X. Feng, J. Sun, Y. Wang, W. Du, B.-F. Liu, Lab Chip 10, 1472–1475 (2010b)

    Article  Google Scholar 

  • C.H. Choi, J.H. Jung, Y.W. Rhee, D.P. Kim, S.E. Shim, C.S. Lee, Biomed. Microdevices 9, 855–862 (2007)

    Article  Google Scholar 

  • J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Chem. Biol. 15, 427–437 (2008)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  • J.F. Edd, D. Di Carlo, K.J. Humphry, S. Koster, D. Irimia, D.A. Weitz, M. Toner, Lab Chip 8, 1262–1264 (2008)

    Article  Google Scholar 

  • L.M. Fidalgo, G. Whyte, D. Bratton, C.F. Kaminski, C. Abell, W.T.S. Huck, Angew. Chem. Int. Ed. 47, 2042–2045 (2008)

    Article  Google Scholar 

  • T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth, Lab Chip 9, 2625–2627 (2009)

    Article  Google Scholar 

  • A.L. Givan, Flow Cytometry First Principles, 2nd edn. (Wiley-Liss, Inc, New York, 2001), pp. 162–163

    Book  Google Scholar 

  • M.Y. He, J.S. Edgar, G.D.M. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu, Anal. Chem. 77, 1539–1544 (2005)

    Article  Google Scholar 

  • S. Ishii, K. Tago, K. Senoo, Appl. Microbiol. Biotechnol. 86, 1281–1292 (2010)

    Article  Google Scholar 

  • S. Koster, F.E. Angile, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110–1115 (2008)

    Article  Google Scholar 

  • D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez, D.A. Weitz, Angew. Chem. Int. Ed. 45, 2556–2560 (2006)

    Article  Google Scholar 

  • R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu, Anal. Chem. 78, 6433–6439 (2006)

    Article  Google Scholar 

  • D. Pappas, K. Wang, Anal. Chim. Acta 601, 26–35 (2007)

    Article  Google Scholar 

  • J.U. Shim, L.F. Olguin, G. Whyte, D. Scott, A. Babtie, C. Abell, W.T.S. Huck, F. Hollfelder, J. Am, Chem. Soc. 131, 15251–15256 (2009)

    Article  Google Scholar 

  • H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)

    Article  Google Scholar 

  • J. Sun, P. Chen, X. Feng, W. Du, B.-F. Liu, Biosens. Bioelectron. 26, 3413–3419 (2011)

    Article  Google Scholar 

  • W. Tan, S. Adv, Mater. 19, 2696–2701 (2007)

    Google Scholar 

  • S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  • A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Angew. Chem. Int. Ed. 49, 5846–5868 (2010)

    Google Scholar 

  • T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163–4166 (2001)

    Article  Google Scholar 

  • Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  • C.-G. Yang, Z.-R. Xu, J.-H. Wang, Trends Anal. Chem. 29, 141–157 (2010)

    Article  Google Scholar 

  • H. Yin, D. Marshall, Curr. Opin. Biotech. 23, 110–119 (2012)

    Article  Google Scholar 

  • L.F. Yu, M.C.W. Chen, K.C. Cheung, Lab Chip 10, 2424–2432 (2010)

    Article  Google Scholar 

  • Y.H. Zhan, J. Wang, N. Bao, C. Lu, Anal. Chem. 81, 2027–2031 (2009)

    Article  Google Scholar 

  • K. Zhang, Q. Liang, S. Ma, X. Mu, P. Hu, Y. Wang, G. Luo, Lab Chip 9, 2992–2999 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from National Basic Research Program of China (2011CB910403), National High Technology Research and Development Program of China (2011AA02A103) and National Natural Science Foundation of China (31070770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Feng.

Additional information

Liang Wu and Pu Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6787 kb)

(MPG 1186 kb)

(MPG 1476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Chen, P., Dong, Y. et al. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed Microdevices 15, 553–560 (2013). https://doi.org/10.1007/s10544-013-9754-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9754-z

Keywords

Navigation