Skip to main content
Log in

Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Fabrication of aligned microfiber scaffolds is critical in successful engineering of anisotropic tissues such as tendon, ligaments and nerves. Conventionally, aligned microfiber scaffolds are two dimensional and predominantly fabricated by electrospinning which is solvent dependent. In this paper, we report a novel technique, named microfiber melt drawing, to fabricate a bundle of three dimensionally aligned polycaprolactone microfibers without using any organic solvent. This technique is simple yet effective. It has been demonstrated that polycaprolactone microfibers of 10 μm fiber diameter can be directly drawn from a 2 mm orifice. Orifice diameter, temperature and take-up speed significantly influence the final linear density and fiber diameter of the microfibers. Mechanical test suggests that mechanical properties such as stiffness and breaking force of microfiber bundles can be easily adjusted by the number of fibers. In vitro study shows that these microfibers are able to support the proliferation of human dermal fibroblasts over 7 days. In vivo result of Achilles tendon repair in a rabbit model shows that the microfibers were highly infiltrated by tendon tissue as early as in 1 month, besides, the repaired tendon have a well-aligned tissue structure under the guidance of aligned microfibers. However whether these three dimensionally aligned microfibers can induce three dimensionally aligned cells remains inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • J. An, C. K. Chua, K. F. Leong, 2010 IEEE Conference on Robotics, Automation and Mechatronics, RAM 2010. 37, (2010)

  • E.R. Balmayor, K. Tuzlakoglu, H.S. Azevedo, R.L. Reis, Acta Biomaterialia 5, 1035 (2009)

    Article  Google Scholar 

  • C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Biomaterials 27, 5681 (2006)

    Article  Google Scholar 

  • A. Charuchinda, R. Molloy, J. Siripitayananon, N. Molloy, M. Sriyai, Polym. Int. 52, 1175 (2003)

    Article  Google Scholar 

  • S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, Biomaterials 29, 653 (2008)

    Article  Google Scholar 

  • R. R. Duling, R. B. Dupaix, N. Katsube, J. Lannutti, J. Biomech. Eng.-T. ASME 130, (2008)

  • H. Ebata, K. Toshima, S. Matsumura, Biomacromolecules 1, 511 (2000)

    Article  Google Scholar 

  • J.M. Estelles, A. Vidaurre, J.M.M. Duenas, I.C. Cortazar, J Mater Sci Mater Med 19, 189 (2008)

    Article  Google Scholar 

  • I. Frydrych, Text. Res. J. 65, 513 (1995)

    Article  Google Scholar 

  • Z. Gan, Q. Liang, J. Zhang, X. Jing, Polym. Degrad. Stab. 56, 209 (1997)

    Article  Google Scholar 

  • C.B. Howard, I. Winston, W. Bell, J. Bone Joint Surg. Ser. B 66, 206 (1984)

    Google Scholar 

  • D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203 (2001)

    Article  Google Scholar 

  • C.M. Hwang, A. Khademhosseini, Y. Park, K. Sun, S.H. Lee, Langmuir 24, 6845 (2008)

    Article  Google Scholar 

  • C. M. Hwang, Y. Park, J. Y. Park, K. Lee, K. Sun, A. Khademhosseini, S. H. Lee, Biomed. Microdevices 1, (2009)

  • D.H.R. Jenkins, I.W. Forster, B. McKibbin, Z.A. Ralis, J. Bone Joint Surg. Ser. B 59, 53 (1977)

    Google Scholar 

  • B.S. Jha, R.J. Colello, J.R. Bowman, S.A. Sell, K.D. Lee, J.W. Bigbee, G.L. Bowlin, W.N. Chow, B.E. Mathern, D.G. Simpson, Acta Biomaterialia 7, 203 (2011)

    Article  Google Scholar 

  • K.F. Leong, F.E. Wiria, C.K. Chua, S.H. Li, Bio-Med. Mater. Eng. 17, 147 (2007)

    Google Scholar 

  • M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, J. Biomed. Mater. Res. A 91, 231 (2009)

    Google Scholar 

  • M.E. Manwaring, J.F. Walsh, P.A. Tresco, Biomaterials 25, 3631 (2004)

    Article  Google Scholar 

  • J.G. Merrell, S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, L.S. Nair, Clin. Exp. Pharmacol. Physiol. 36, 1149 (2009)

    Article  Google Scholar 

  • R.P. Nachane, K.R. Krishna Iyer, Text. Res. J. 50, 639 (1980)

    Article  Google Scholar 

  • H.W. Ouyang, J.C.H. Goh, A. Thambyah, S.H. Teoh, E.H. Lee, Tissue Eng 9, 431 (2003)

    Article  Google Scholar 

  • H. W. Ouyang, S. L. Toh, J. C. H. Goh, T. E. Tay, P. T. Nhan, Transactions - 7th World Biomaterials Congress. 894 (2004)

  • G.D. Parfitt, Powder Technol. 17, 157 (1977)

    Article  Google Scholar 

  • D.H. Reneker, W. Kataphinan, A. Theron, E. Zussman, A.L. Yarin, Polymer 43, 6785 (2002)

    Article  Google Scholar 

  • J.L. Ricci, A.G. Gona, H. Alexander, J.R. Parsons, J. Biomed. Mater. Res. 18, 1073 (1984)

    Article  Google Scholar 

  • S. Sahoo, H. W. Ouyang, J. C. H. Goh, T. E. Tay, S. L. Toh, Proceedings of SPIE - The International Society for Optical Engineering. 5852 PART II, 658 (2005)

  • M. Sato, M. Maeda, H. Kurosawa, Y. Inoue, Y. Yamauchi, H. Iwase, J. Orthop. Sci. 5, 256 (2000)

    Article  Google Scholar 

  • S. Saxena, Geeta, B. Gupta, J. Hilborn, Processing of polycaprolactone filaments as scaffold materials for tissue engineering. in TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal. Tissue Engineering Part A, vol. 14 (2008), p. 899

  • G. Sekosan, N. Vasanthan, J. Polymer Sci., Part B: Polymer Phys. 48, 202 (2010)

    Article  Google Scholar 

  • L. Shor, S. Güçeri, X. Wen, M. Gandhi, W. Sun, Biomaterials 28, 5291 (2007)

    Article  Google Scholar 

  • H.J. Sung, C. Meredith, C. Johnson, Z.S. Galis, Biomaterials 25, 5735 (2004)

    Article  Google Scholar 

  • C. Vaquette, J.J. Cooper-White, Acta Biomaterialia 7, 2544 (2011)

    Article  Google Scholar 

  • J.H. Wang, F. Jia, T.W. Gilbert, S.L.Y. Woo, J. Biomech. 36, 97 (2003)

    Article  Google Scholar 

  • X. Wei, C. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G. Guo, L. Qiu, Z. Qian, Int. J. Pharm. 381, 1 (2009)

    Article  Google Scholar 

  • J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817 (2005)

    Article  Google Scholar 

  • M.R. Williamson, A.G.A. Coombes, Biomaterials 25, 459 (2004)

    Article  Google Scholar 

  • F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Acta Biomaterialia 3, 1 (2007)

    Article  Google Scholar 

  • Z. Yin, X. Chen, J.L. Chen, W.L. Shen, T.M. Hieu Nguyen, L. Gao, H.W. Ouyang, Biomaterials 31, 2163 (2010)

    Article  Google Scholar 

  • H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24, 2077 (2003)

    Article  Google Scholar 

Download references

Acknowledgment

This project is supported by Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Chua, C.K., Leong, K.F. et al. Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. Biomed Microdevices 14, 863–872 (2012). https://doi.org/10.1007/s10544-012-9666-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9666-3

Keywords

Navigation