Skip to main content
Log in

Nanoporous membrane-sealed microfluidic devices for improved cell viability

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell-laden microfluidic devices have broad potential in various biomedical applications, including tissue engineering and drug discovery. However, multiple difficulties encountered while culturing cells within devices affecting cell viability, proliferation, and behavior has complicated their use. While active perfusion systems have been used to overcome the diffusive limitations associated with nutrient delivery into microchannels to support longer culture times, these systems can result in non-uniform oxygen and nutrient delivery and subject cells to shear stresses, which can affect cell behavior. Additionally, histological analysis of cell cultures within devices is generally laborious and yields inconsistent results due to difficulties in delivering labeling agents in microchannels. Herein, we describe a simple, cost-effective approach to preserve cell viability and simplify labeling within microfluidic networks without the need for active perfusion. Instead of bonding a microfluidic network to glass, PDMS, or other solid substrate, the network is bonded to a semi-permeable nanoporous membrane. The membrane-sealed devices allow free exchange of proteins, nutrients, buffers, and labeling reagents between the microfluidic channels and culture media in static culture plates under sterile conditions. The use of the semi-permeable membrane dramatically simplifies microniche cell culturing while avoiding many of the complications which arise from perfusion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • K. Aran, L.A. Sasso, N. Kamdar, J.D. Zahn, Lab Chip 10(5), 548–552 (2010)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442(7101), 403–411 (2006)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc Natl Acad Sci U S A 103(8), 2480–2487 (2006)

    Article  Google Scholar 

  • L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Lab Chip 6(3), 394–406 (2006)

    Google Scholar 

  • N. Korin, A. Bransky, U. Dinnar, S. Levenberg, Biomed Microdevices 11(1), 87–94 (2009a)

    Article  Google Scholar 

  • N. Korin, A. Bransky, M. Khoury, U. Dinnar, S. Levenberg, Biotechnol Bioeng 102(4), 1222–1230 (2009b)

    Article  Google Scholar 

  • P. Lee, R. Lin, J. Moon, L.P. Lee, Biomed Microdevices 8(1), 35–41 (2006)

    Article  Google Scholar 

  • Y. Ling, J. Rubin, Y. Deng, C. Huang, U. Demirci, J.M. Karp et al., Lab Chip 7(6), 756–762 (2007)

    Article  Google Scholar 

  • Y. Luo, M.S. Shoichet, Nat Mater 3(4), 249–253 (2004)

    Article  Google Scholar 

  • G. Mehta, K. Mehta, D. Sud, J.W. Song, T. Bersano-Begey, N. Futai et al., Biomed Microdevices 9(2), 123–134 (2007)

    Article  Google Scholar 

  • J. Park, F. Berthiaume, M. Toner, M.L. Yarmush, A.W. Tilles, Biotechnol Bioeng 90(5), 632–644 (2005)

    Article  Google Scholar 

  • D.I. Shreiber, P.A. Enever, R.T. Tranquillo, Exp Cell Res 266(1), 155–166 (2001)

    Article  Google Scholar 

  • H.G. Sundararaghavan, S.N. Masand, D.I. Shreiber, J Neurotrauma, 2011. doi:10.1089/neu.2010.1606.

  • S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J. Kenis, R.F. Ismagilov et al., Proc Natl Acad Sci U S A 96(10), 5545–5548 (1999)

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 5(1), 14–19 (2005)

    Article  Google Scholar 

  • G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip 4(2), 91–97 (2004)

    Article  Google Scholar 

  • G.M. Walker, J. Sai, A. Richmond, M. Stremler, C.Y. Chung, J.P. Wikswo, Lab Chip 5(6), 611–618 (2005)

    Article  Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu Rev Biomed Eng 3, 335–373 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Funding for these studies was provided by the National Science Foundation (NSF-ARRA-CBET 0846328) and National Institutes of Health (NIH 1R21EB009245-01A1). SNM was supported by the Rutgers-UMDNJ Biotechnology Training Program (NIH Grant Number 5T32GM008339-20) and an NSF-IGERT on the Integrated Science and Engineering of Stem Cells (NSF DGE 0801620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Shreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masand, S.N., Mignone, L., Zahn, J.D. et al. Nanoporous membrane-sealed microfluidic devices for improved cell viability. Biomed Microdevices 13, 955–961 (2011). https://doi.org/10.1007/s10544-011-9565-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9565-z

Keywords

Navigation