Skip to main content
Log in

Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Standard micro-fabrication techniques which were originally developed to fabricate semi-conducting electronic devices were inadvertently found to be adequate for bio-chip fabrication suited for applications such as stimulation and recording from neurons in-vitro as well as in-vivo. However, cell adhesion to conventional micro-chips is poor and chemical treatments are needed to facilitate the interaction between the device surface and the cells. Here we present novel carbon nanotube-based electrode arrays composed of cell-alluring carbon nanotube (CNT) islands. These play a double role of anchoring neurons directly and only onto the electrode sites (with no need for chemical treatments) and facilitating high fidelity electrical interfacing–recording and stimulation. This method presents an important step towards building nano-based neurochips of precisely engineered networks. These neurochips can provide unique platform for studying the activity patterns of ordered networks as well as for testing the effects of network damage and methods of network repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A. Ayali, E. Fuchs, Y. Zilberstein, A. Robinson, O. Shefi, E. Hulata, I. Baruchi, E. Ben-Jacob, Contextual regularity and complexity of neuronal activity: from stand-alone cultures to task-performing animals Complexity 9(6), 25–32 (2004) doi:10.1002/cplx.20046

    Article  Google Scholar 

  • J.N. Barisci, G.G. Wallace, R.H. Baughman, Electrochemical studies of single-wall carbon nanotubes in aqueous solutions J. Electroanal. Chem. 488(2), 92–98 (2000) doi:10.1016/S0022-0728(00)00179-0

    Article  Google Scholar 

  • E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine J. Biomed. Nanotech. 1, 3–17 (2005) doi:10.1166/jbn.2005.004

    Article  Google Scholar 

  • L.J. Breckenridge, R.J. Wilson, P. Connolly, A.S. Curtis, J.A. Dow, S.E. Blackshaw, C.D. Wilkinson, Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording J. Neurosci. Res. 42(2), 266–276 (1995) doi:10.1002/jnr.490420215

    Article  Google Scholar 

  • J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors Carbon 40(8), 1193–1197 (2002) doi:10.1016/S0008-6223(01)00266-4

    Article  Google Scholar 

  • H.G. Craighead, C.D. James, A.M.P. Turner, Chemical and topographical patterning for directed cell attachment Curr. Opin. Solid State Mater. Sci. 5(2–3), 177–184 (2001) doi:10.1016/S1359-0286(01)00005-5

    Article  Google Scholar 

  • M. David-Pur, C. Adams, E. Sernagor, R. Sorkin, A. Greenbaum, M. Shein, E. Ben-Jacob, Y. Hanein, 2008. Carbon nanotube based MEA for retinal interfacing applications. Proc. of the 6th International meeting on substrate-integrated micro electrode arrays, pp. 253–256, Reutlingen, Germany

  • N.M. Dowell-Mesfin, M.A. Abdul-Karim, A.M. Turner, S. Schanz, H.G. Craighead, B. Roysam, J.N. Turner, W. Shain, Topographically modified surfaces affect orientation and growth of hippocampal neurons J. Neural Eng. 1(2), 78–90 (2004) doi:10.1088/1741-2560/1/2/003

    Article  Google Scholar 

  • T. Gabay, E. Jakobs, E. Ben-Jacob, Y. Hanein, Engineered self-organization of neural networks using carbon nanotube clusters Physica A. 350, 611–621 (2005)

    Article  Google Scholar 

  • T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z.R. Abrams, E. Ben-Jacob, Y. Hanein, Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays Nanotechnology 18(3), 35201 (2007) doi:10.1088/0957-4484/18/3/035201

    Article  Google Scholar 

  • M. Grattarola, S. Martinoia, Modeling the neuron-microtransducer junction: from extracellular to patch recording IEEE Trans. Biomed. Eng. 40(1), 35–41 (1993) doi:10.1109/10.204769

    Article  Google Scholar 

  • H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as substrates for neuronal growth Nano Lett. 4(3), 507–511 (2004) doi:10.1021/nl035193d

    Article  Google Scholar 

  • E. Hulata, R. Segev, E. Ben-Jacob, A method for spike sorting and detection based on wavelet packets and Shannon's mutual information J. Neurosci. Methods 117(1), 1–12 (2002) doi:10.1016/S0165-0270(02)00032-8

    Article  Google Scholar 

  • Y. Jimbo, A. Kawana, Electrical stimulation and recording from cultured neurons using a planar electrode array Bioelectrochem. Bioenerg. 29(2), 193–204 (1992) doi:10.1016/0302-4598(92)80067-Q

    Article  Google Scholar 

  • J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles J. Phys. Chem. B 106(36), 9299–9305 (2002) doi:10.1021/jp021201n

    Article  Google Scholar 

  • C. Liu, A.J. Bard, F. Wudl, I. Weitz, J.R. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors Electrochem. Solid-State Lett. 2, 577 (1999) doi:10.1149/1.1390910

    Article  Google Scholar 

  • V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, Carbon nanotube substrates boost neuronal electrical signaling Nano Lett. 5(6), 1107–1110 (2005) doi:10.1021/nl050637m

    Article  Google Scholar 

  • M.P. Mattson, R.C. Haddon, A.M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth J. Mol. Neurosci. 14(3), 175–182 (2000) doi:10.1385/JMN:14:3:175

    Article  Google Scholar 

  • A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits J. Neurosci. 27(26), 6931–6936 (2007) doi:10.1523/JNEUROSCI.1051-07.2007

    Article  Google Scholar 

  • T.D. Nguyen-Vu, H. Chen, A.M. Cassell, R.J. Andrews, M. Meyyappan, J. Li, Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface IEEE Trans. Biomed. Eng. 54(6 Pt 1), 1121–1128 (2007) doi:10.1109/TBME.2007.891169

    Article  Google Scholar 

  • R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira, E. Ben-Jacob, Long term behavior of lithographically prepared in vitro neuronal networks Phys. Rev. Lett. 88(11), 118102 (2002) doi:10.1103/PhysRevLett.88.118102

    Article  Google Scholar 

  • R. Segev, M. Benveniste, Y. Shapira, E. Ben-Jacob, Formation of electrically active clusterized neural networks Phys. Rev. Lett. 90(16), 168101 (2003) doi:10.1103/PhysRevLett.90.168101

    Article  Google Scholar 

  • R. Sorkin, T. Gabay, P. Blinder, D. Baranes, E. Ben-Jacob, Y. Hanein, Compact self-wiring in cultured neural networks J. Neural Eng. 3(2), 95–101 (2006) doi:10.1088/1741-2560/3/2/003

    Article  Google Scholar 

  • R. Sorkin, A. Greenbaum, M. David-Pur, S. Anava, A. Ayali, E. Ben-Jacob, Y. Hanein, Process entanglement as a neuronal anchorage mechanism to rough surfaces Nanotechnology (2008) (in press)

  • D.A. Stenger, G.W. Gross, E.W. Keefer, K.M. Shaffer, J.D. Andreadis, W. Ma, J.J. Pancrazio, Detection of physiologically active compounds using cell-based biosensors Trends Biotechnol. 19(8), 304–309 (2001) doi:10.1016/S0167-7799(01)01690-0

    Article  Google Scholar 

  • K. Wang, H.A. Fishman, H. Dai, J.S. Harris, Neural stimulation with a carbon nanotube microelectrode array Nano Lett. 6(9), 2043–2048 (2006) doi:10.1021/nl061241t

    Article  Google Scholar 

  • T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants Nanotechnology 15(1), 48–54 (2004) doi:10.1088/0957-4484/15/1/009

    Article  Google Scholar 

  • B.C. Wheeler, J.M. Corey, G.J. Brewer, D.W. Branch, Microcontact printing for precise control of nerve cell growth in culture J. Biomech. Eng. 121(1), 73–78 (1999) doi:10.1115/1.2798045

    Article  Google Scholar 

  • Z. Yu, T.E. McKnight, M.N. Ericson, A.V. Melechko, M.L. Simpson, B.M. Ill, Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices Nano Lett. 7(8), 2188–2195 (2007) doi:10.1021/nl070291a

    Article  Google Scholar 

  • X. Zhang, S. Prasad, S. Niyogi, A. Morgan, M. Ozkan, C.S. Ozkan, Guided neurite growth on patterned carbon nanotubes Sens. Actuators B Chem. 106(2), 843–850 (2005) doi:10.1016/j.snb.2004.10.039

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Inna Brainis for her technical assistance and Moti-Ben David, Itsik Kalifa, Itay Baruchi and Nadav Raichman for their assistance and useful discussions. This project was supported in part by a grant from the Israeli Science Foundation (1138/04) and by the Tauber Fund at Tel Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hanein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, M., Greenbaum, A., Gabay, T. et al. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed Microdevices 11, 495–501 (2009). https://doi.org/10.1007/s10544-008-9255-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9255-7

Keywords

Navigation