Skip to main content

Advertisement

Log in

A biocompatible microdevice for core body temperature monitoring in the early diagnosis of infectious disease

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The early diagnosis of microbial infection is critical to the clinical instigation of effective post-exposure prophylaxis or therapy. However, diagnosis of infection is often attempted only when there are overt clinical signs, and for some of the serious human pathogens, this may jeopardise the efficacy of therapy. We have used a miniaturised sealed, implantable transponder incorporating a calibrated temperature sensor with an external receiver system, to monitor core body temperature (Tc) remotely. We have observed early changes in the diurnal rhythm of Tc, after infection of mice with bacterial pathogens. Changes in Tc preceded overt clinical signs by 3–10 h following challenge with Yersinia pestis, which causes acute infection, In contrast, changes in Tc were detected 11 days before clinical signs in mice exposed to Burkholderia pseudomallei, which causes a chronic syndrome. Significantly, mice pre-vaccinated against Y.pestis infection showed only slight and transient disruption to the diurnal rhythm for Tc, in the absence of clinical signs, when challenged with 106 median lethal doses of Y.pestis. This remote monitoring technology could be used to monitor changes in more than one physiological parameter and extrapolation of these data to the clinic would define the available therapeutic window in which diagnosis and post-exposure prophylaxis could be instigated, after a suspected exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • T. Atkins, R.G. Prior, K. Mack, P. Russell, M. Nelson, P.C.F. Oyston, G. Dougan, and R.W. Titball, Infect. Immun. 70, 5290 (2002).

    Article  Google Scholar 

  • D. Brooks, R.L. Horner, L.F. Kozar, T.K. Waddell, C.L. Render, and E.A. Phillipson, J. Appl. Physiol 81, 1012 (1996).

    Google Scholar 

  • Y. Cohen, F. Bahri, J. Bruneau, M. Dubuis, N. Dubuis, L. Merlin, T. Michaud, and S. Peysson, Intl. J. Nucl. Med. Biol. 12, 477 (1986).

    Google Scholar 

  • J.F. Cooper, Progress in Clin Biol Res. 29, 345 (1979).

    Google Scholar 

  • H.S. Crofts, S. Wilson, N.G. Muggelton, D.J. Nutt, E.A.M. Scott, and P.C. Pearce, Clin Neurophysiol 112, 2265 (2001).

    Article  Google Scholar 

  • J.P. Filkins, N.R. Di Luzio, Proc. Soc. Exp. Biol. Med. 129, 724 (1968).

    Google Scholar 

  • H.H. Freedman, J. Exp. Med. 111, 453 (1960).

    Article  Google Scholar 

  • G.G. Greer and E.T. Rietscjhel, Infect. Immun. 19, 357 (1978).

    Google Scholar 

  • G.D. Griffiths, R.J. Hornby, D.J. Stevens, E.A.M. Scott, and D.G. Upshall, J. Appl. Toxicol. 21, 59 (2001).

    Article  Google Scholar 

  • K. Kramer and L.B. Kinter, Physiol. Genomics 13, 197 (2003).

    Google Scholar 

  • M.S. Lever, M. Nelson, P.I. Ireland, A.J. Stagg, R.J. Beedham, G.A. Hall, G. Knight, and R.W. Titball, J. Med Micro 52, 1109 (2003).

    Article  Google Scholar 

  • T.M. Mann, P.C. Pearce, B.A. Reed, E.J. Badcock, and E.A.M. Scott, Proceedings of the 16th International symposium on Biotelemetry, Vienna/Austria May 6–11 (2001).

  • H. Mumford and J.R. Wetherell, J. Neurosci. Methods 107, 125 (2001).

    Article  Google Scholar 

  • M. Nelson, J.L. Prior, S.M. Lever, H.E. Jones, T.P. Atkins, and R.W. Titball, J. Med. Micro 53, 1177 (2004).

    Article  Google Scholar 

  • P.C. Pearce, H.S. Crofts, S. Wilson, N.G. Muggleton, and E.A.M. Scott, Monitoring sleep in non-human primates by means of radiotelemetry. Proceedings of the 16th International symposium on Biotelemetry, Vienna, Austria May 6–11 (2001).

  • B.A. Reed, E.J. Badcock, H. Mumford, J.R. Wetherell, and E.A.M. Scott, A novel minimally invasive device for recording temperature in groups of freely-moving rodents housed under laboratory conditions. Proceedings of the 16th International symposium on Biotelemetry, Vienna/Austria May 6–11 (2001).

  • R.C. Ristuccia and L.P. Spear, Ann N.Y. Acad. Sci. 1021, 445 (2004).

    Article  Google Scholar 

  • V. Ruggiero, C.M. D’Urso, C. Albertoni, S. Campo, P. Foresta, and E.A. Martelli, Mediators of Inflammation 2, S43 (1993).

    Article  Google Scholar 

  • P. Russell, S.M. Eley, S.E. Hibbs, R.J. Manchee, A.J. Stagg, and R.W. Titball, Vaccine 13, 1551 (1995).

    Article  Google Scholar 

  • V.L. Savage, Remote monitoring in biocontainment. LASA winter meeting UK 2004.

  • C.R. Schnell and P. Gerber, Prim. Rep. 49, 61 (1997).

    Google Scholar 

  • E.A.M. Scott and R.N. Hollands, Monitoring home cage activity in rats over 24 hours. Proceedings of the Fifth FELASA Symposium Brighton (1993), pp. 364–374.

  • J.A. Splawinski, E. XZacny, and Z. Gorka, Pflugers Arch. 38, 125 (1977).

    Article  Google Scholar 

  • J. Wang, T., Ando, and A.J. Dunn, Neuroimmunomodulation 4, 230 (1997).

    Google Scholar 

  • A.C. Wardlaw, L. Boorman, and R. Reid, Br. J. Exp. Pathol. 52, 198 (1971).

    Google Scholar 

  • J. Wetherell, M. Price, and H. Mumford, NeuroToxicology 27, 485 (2006).

    Article  Google Scholar 

  • E.D. Williamson, S.M. Eley, K.F. Griffin, M. Green, P. Russell, S.E.C. Leary, P.C.F. Oyston, T. Easterbrook, K.M. Reddin, A. Robinson, and R.W. Titball, FEMS Immun. Med. Micro. 12, 223 (1995).

    Article  Google Scholar 

  • E.D. Williamson, H.C. Flick-Smith, C.S. LeButt, C.A. Rowland, S.M. Jones, E.L. Waters, R.J. Gwyther, J. Miller, P.J. Packer, and M. Irving, Infect. Immun 73, 3598 (2005).

    Article  Google Scholar 

  • G. Yaa, J. Wolinksi, and R. Zablieski, J. Vet Med 51, 106 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

Expert technical assistance from Warren Kitchen, Naomi Clayton and Dr. S.A. Watts is gratefully acknowledged. The development of the remote monitoring technology with application to refinement of existing procedures was supported by a grant from the UK Home Office APC Research and Alternatives Sub-Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Williamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, E.D., Savage, V.L., Lingard, B. et al. A biocompatible microdevice for core body temperature monitoring in the early diagnosis of infectious disease. Biomed Microdevices 9, 51–60 (2007). https://doi.org/10.1007/s10544-006-9007-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9007-5

Keywords

Navigation