Skip to main content
Log in

Modeling of a Microfluidic Channel in the Presence of an Electrostatic Induced Cross-Flow

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Amongst the processes that have been implemented in microfluidic devices, electrophoretic transport of charged molecules, along microfluidic channels, is one of the most commonly found. However, less work has been done about continuous, pressure gradient driven flow systems where an electric field is applied orthogonally with respect to the microchannel walls. The perspective applications of this technique, include continuous flow separation and concentration of analyte molecules, and the kinetic control of surface reactions. In order to dimensioning and optimizing such a device, a mathematical model has been formulated and analyzed both with numeric and analytic methods. The given solutions let the designer of microfluidic devices able to estimate the concentration profiles along the microchannel length, as a function of the main system parameters. As a practical example of application which could be of great interest in biotechnology applications, the results relative to the simulation of the electrostatic induced cross flow of single strand DNA oligonucleotides of about 20 bases has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Andersson. and A. van den Berg, Sensors and Actuators B (Chemical) B92(3), 315 (2003).

    Article  Google Scholar 

  • Q. Dong, E. Stellwagen, J.M. Dagle, and N.C. Stellwagen, Electrophoresis 24(19/20), 3323 (2003).

    Article  PubMed  Google Scholar 

  • D. Erickson and Li. Dongqing, Analytica Chimica Acta 507(1), 11 (2004).

    Article  Google Scholar 

  • A.B. Guncan and G.P. Peterson, Appl. Mech. Rev. 47, 397 (1994).

    Google Scholar 

  • R.J. Heaton, A.W. Peterson, and R.M. Georgiadis, Proc. Natl. Acad. Sci. USA 98(7), 3701 (2001).

    Article  PubMed  Google Scholar 

  • C. Heller, G.W. Slater, P. Mayer, N. Dovichi, D. Pinto, J.L. Viovy, and G. Drouin, J. Chromatography A 806(1), 113 (1998).

    Article  Google Scholar 

  • P.C. Hiemenz, in Principles of Colloid and Surface Chemistry, Dekker (ed.), New York. 1986, p. 815.

  • D.L. Hopkins and V.L. McGuffin, Analytical Chemistry 70(6), 1066 (1998).

    Article  Google Scholar 

  • K. Morishima, T. Fukuda, F. Arai and K. Yoshikawa, MEMS’97 Proceedings, IEEE, Tenth Annual International Workshop, 389 (1997)

  • C.M. Niemeyer and C.A. Mirkin, in Nanobiotechnology, Wiley-VCH (ed.), 2004, p. 14.

  • P.W. Peiyi and W.A. Little, Cryogenics 23, 273 (1983).

    Article  Google Scholar 

  • P.G. Righetti and C. Gelfi, Journal of Biochemical and Biophysical Methods 41(2/3), 75 (1999).

    Article  PubMed  Google Scholar 

  • J. Sambrook, E.F. Fritsch, and T. Maniatis, in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, NY, 1989) Vol. 1–3.

  • G.W. Slater, S. Guillouzic, M.G. Gauthier, J.-F. Mercier, M. Kenward, L.C. McCormick, and F. Tessier, Electrophoresis 23(22/23), 3791 (2002).

    Article  PubMed  Google Scholar 

  • E. Stellwagen, Electrophoresis 23(16), 2794 (2002).

    Article  PubMed  Google Scholar 

  • N.C. Stellwagen, C. Nancy, C. Gelfi, and P.G. Righetti, Biopolymers 42(6), 687 (1997).

    Article  PubMed  Google Scholar 

  • E. Stellwagen and N.C. Stellwagen, Electrophoresis 23(16), 2794 (2002).

    Article  PubMed  Google Scholar 

  • M. Tokeshi, Y. Kikutani, A. Hibara, K. Sato, and H. Hisamoto, Electrophoresis 24(21), 3583 (2003).

    Article  PubMed  Google Scholar 

  • O.O. Van der Biest and L.J. Vandeperre, Annual Review of Materials Science 29, 327 (1999).

    Article  Google Scholar 

  • E. Verpoorte, Electrophoresis 23(5), 677 (2002).

    Article  PubMed  Google Scholar 

  • In-Chul Yeh and G. Hummer, Biophysical Journal 86(2), 681 (2004).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Scuor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scuor, N., Gallina, P., Sbaizero, O. et al. Modeling of a Microfluidic Channel in the Presence of an Electrostatic Induced Cross-Flow. Biomed Microdevices 7, 231–242 (2005). https://doi.org/10.1007/s10544-005-3030-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-3030-9

Keywords

Navigation