Skip to main content
Log in

Gibbs phenomenon and its removal for a class of orthogonal expansions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We detail the Gibbs phenomenon and its resolution for the family of orthogonal expansions consisting of eigenfunctions of univariate polyharmonic operators equipped with homogeneous Neumann boundary conditions. As we establish, this phenomenon closely resembles the classical Fourier Gibbs phenomenon at interior discontinuities. Conversely, a weak Gibbs phenomenon, possessing a number of important distinctions, occurs near the domain endpoints. Nonetheless, in both cases we are able to completely describe this phenomenon, including determining exact values for the size of the overshoot.

Next, we demonstrate how the Gibbs phenomenon can be both mitigated and completely removed from such expansions using a number of different techniques. As a by-product, we introduce a generalisation of the classical Lidstone polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)

    Google Scholar 

  2. Adcock, B.: Univariate modified Fourier methods for second order boundary value problems. BIT Numer. Math. 49(2), 249–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adcock, B.: Convergence acceleration of modified Fourier series in one or more dimensions. Math. Comp. 80(273), 225–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adcock, B.: Multivariate modified Fourier series and application to boundary value problems. Numer. Math. 115(4), 511–552 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Adcock, B.: On the convergence of expansions in polyharmonic eigenfunctions. Technical report NA2010/06, DAMTP, University of Cambridge (2010)

  6. Adcock, B., Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation II: expansions in Birkhoff series. IMA J. Numer. Anal. (to appear) (2010)

  7. Agarwal, R., Wong, P.: Error Inequalities in Polynomial Interpolation and Their Applications. Springer, Berlin (1993)

    MATH  Google Scholar 

  8. Baszenski, G., Delvos, F.J.: Accelerating the rate of convergence of bivariate Fourier expansions. In: Approximation Theory IV, pp. 335–340 (1983)

    Google Scholar 

  9. Birkhoff, G.D.: Boundary value and expansion problems of ordinary linear differential equations. Trans. Am. Math. Soc. 9(4), 373–395 (1908)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd, J.P.: A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys. 178, 118–160 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Boyd, J.P.: Acceleration of algebraically-converging Fourier series when the coefficients have series in powers of 1/n. J. Comput. Phys. 228, 1404–1411 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brunner, H., Iserles, A., Nørsett, S.P.: The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equ. Appl. (2010, to appear)

  13. Driscoll, T.A., Fornberg, B.: A Padé-based algorithm for overcoming the Gibbs phenomenon. Numer. Algorithms 26, 77–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eckhoff, K.S.: Accurate and efficient reconstruction of discontinuous functions from truncated series expansions. Math. Comput. 61(204), 745–763 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671–690 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eckhoff, K.S.: On a high order numerical method for functions with singularities. Math. Comput. 67(223), 1063–1087 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fornberg, B., Flyer, N.: The Gibbs phenomenon for radial basis functions. In: Jerri, A. (ed.) The Gibbs Phenomenon in Various Representations and Applications. Sampling Publishing, Potsdam (2007)

    Google Scholar 

  18. Gelb, A., Gottlieb, D.: The resolution of the Gibbs phenomenon for “spliced” functions in one and two dimensions. Comput. Math. Appl. 33(11), 35–58 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia (1977)

    MATH  Google Scholar 

  20. Gottlieb, D., Shu, C.W.: On the Gibbs’ phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gottlieb, D., Shu, C.W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43(1–2), 91–98 (1992)

    MathSciNet  Google Scholar 

  22. Huybrechs, D.: On the Fourier extension of non-periodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28, 862–887 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jerri, A.: The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations. Springer, Berlin (1998)

    MATH  Google Scholar 

  25. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis, 3rd edn. Interscience, New York (1958)

    MATH  Google Scholar 

  26. Lorentz, G.G., Jetter, K., Riemenschneider, S.D.: Birkhoff Interpolation. Addison–Wesley, London (1983)

    MATH  Google Scholar 

  27. Lyness, J.N.: Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comput. 25, 87–104 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lyness, J.N.: Computational techniques based on the Lanczos representation. Math. Comput. 28(125), 81–123 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lyness, J.N.: The calculation of trigonometric Fourier coefficients. J. Comput. Phys. 54, 57–73 (1984)

    Article  MATH  Google Scholar 

  30. Minkin, A.M.: Equiconvergence theorems for differential operators. J. Math. Sci. 96, 3631–3715 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Naimark, M.A.: Linear Differential Operators. Harrap, Bromley (1968)

    MATH  Google Scholar 

  32. Olver, S.: On the convergence rate of a modified Fourier series. Math. Comput. 78, 1629–1645 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Platte, R., Trefethen, L.N., Kuijlaars, A.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. (2010, to appear)

  34. Shaw, J.K., Johnson, L.W., Riess, R.D.: Accelerating convergence of eigenfunction expansions. Math. Comput. 30(135), 469–477 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sidi, A.: Practical Extrapolation Methods. Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  36. Smitheman, S.A., Spence, E.A., Fokas, A.S.: A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon. IMA J. Numer. Anal. 30(4), 1184–1205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Srivastava, H., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  38. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs’ phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Young, R.M.: An Introduction to Nonharmonic Fourier Series, 1st edn. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  40. Zygmund, A.: Trigonometric Series, vol. 1. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Adcock.

Additional information

Communicated by Lothar Reichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adcock, B. Gibbs phenomenon and its removal for a class of orthogonal expansions. Bit Numer Math 51, 7–41 (2011). https://doi.org/10.1007/s10543-010-0301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0301-5

Keywords

Mathematics Subject Classification (2000)

Navigation