Skip to main content
Log in

Orientation and Mobility of Actin in Different Intermediate States of the ATP Hydrolysis Cycle

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Using polarization fluorimetry, we have investigated conformational changes of FITC-phalloidin-labeled F-actin in ghost muscle fibers. These changes were induced by myosin subfragment-1 (S1) in the absence and presence of MgADP, MgAMP-PNP, MgATPγS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes of orientation and mobility of actin monomers during the ATPase cycle. The most pronounced differences in orientation (∼4°) and in mobility (∼43%) of actin were found between the actomyosin states induced by MgADP and MgATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

actomyosin

DTT:

dithiothreitol

S1:

myosin subfragment-1

FITC:

fluorescin isothiocyanate

AMP-PNP:

5′-adenylylimidodiphosphate

ATPγS:

adenosine 5′-O-(3-thiotriphosphate)

pPDM:

N,N′-p-phenylenedimaleimide

NEM:

N-ethylmaleimide

REFERENCES

  1. Lymn, R. W., and Taylor, E. W. (1971) Biochemistry, 10, 4617–4624.

    Article  PubMed  CAS  Google Scholar 

  2. Bagshaw, C. R., and Trentham, D. R. (1974) Biochem. J., 141, 331–349.

    PubMed  CAS  Google Scholar 

  3. Brenner, B., Chalovich, J. M., Greene, L. E., Eisenberg, E., and Schoenberg, M. (1986) Biophys. J., 50, 685–691.

    PubMed  CAS  Google Scholar 

  4. Geeves, M. A. (1991) Biochem. J., 274, 1–14.

    PubMed  CAS  Google Scholar 

  5. Stein, L. A., Schwarz, R. P., Chock, P. B., and Eisenberg, E. (1979) Biochemistry, 18, 3895–3909.

    Article  PubMed  CAS  Google Scholar 

  6. Chalovich, J. M., Chock, P. B., and Eisenberg, E. (1981) J. Biol. Chem., 256, 575–578.

    PubMed  CAS  Google Scholar 

  7. Chalovich, J. M., Greene, L. E., and Eisenberg, E. (1983) Proc. Natl. Acad. Sci. USA, 80, 4909–4913.

    PubMed  CAS  Google Scholar 

  8. Marston, S. B., and Weber, A. (1975) Biochemistry, 14, 3868–3873.

    Article  PubMed  CAS  Google Scholar 

  9. Margossian, S. S., and Lowey, S. (1978) Biochemistry, 17, 5431–5439.

    Article  PubMed  CAS  Google Scholar 

  10. White, H. D., and Taylor, E. W. (1976) Biochemistry, 15, 5818–5826.

    PubMed  CAS  Google Scholar 

  11. Marston, S. B. (1982) Biochem J., 203, 453–460.

    PubMed  CAS  Google Scholar 

  12. Bremel, R. D., and Weber, A. (1972) Nature, 238, 97–101.

    CAS  Google Scholar 

  13. Greene, L. E., and Eisenberg, E. (1980) Proc. Natl. Acad. Sci. USA, 77, 2616–2620.

    PubMed  CAS  Google Scholar 

  14. Eisenberg, E., and Hill, T. L. (1985) Science, 227, 999–1006.

    PubMed  CAS  Google Scholar 

  15. Cooke, R. (1997) Physiol. Rev., 77, 671–697.

    PubMed  CAS  Google Scholar 

  16. Volkmann, N., and Hanein, D. (2000) Curr. Opin. Cell Biol., 12, 26–34.

    Article  PubMed  CAS  Google Scholar 

  17. Prochniewicz, E., and Yanagida, T. (1990) J. Mol. Biol., 216, 761–772.

    Article  PubMed  CAS  Google Scholar 

  18. Egelman, E. H., and Orlova, A. (1995) J. Struct. Biol., 115, 159–162.

    Article  CAS  Google Scholar 

  19. Kim, E., Bobkova, E., Miller, C. J., Orlova, A., Hegyi, G., Egelman, E. H., Muhlrad, A., and Reisler, E. (1998) Biochemistry, 37, 17801–17809.

    PubMed  CAS  Google Scholar 

  20. Borovikov, Yu. S., Chernogriadskaia, N. A., and Rozanov, I. M. (1974) Tsitologiia, 16, 977–982.

    PubMed  CAS  Google Scholar 

  21. Borovikov, Yu. S., and Kakol, I. (1991) Gen. Physiol. Biophys., 10, 245–264.

    PubMed  CAS  Google Scholar 

  22. Borovikov, Yu. S. (1999) Int. Rev. Cytol., 189, 267–301.

    PubMed  CAS  Google Scholar 

  23. Yanagida, T., and Oosawa, F. (1978) J. Mol. Biol., 126, 507–524.

    Article  PubMed  CAS  Google Scholar 

  24. Prochniewicz-Nakayama, E., Yanagida, T., and Oosawa, F. (1983) J. Cell Biol., 97, 1663–1667.

    Article  PubMed  CAS  Google Scholar 

  25. Ivanov, I. I., and Yur'ev, V. A. (1961) Biochemistry and Pathobiochemistry of Muscles [in Russian], Medgiz, Leningrad.

    Google Scholar 

  26. Weeds, A. G., and Pope, B. (1977) J. Mol. Biol., 111, 129–157.

    PubMed  CAS  Google Scholar 

  27. Reisler, E. (1982) Meth. Enzymol., 85, 84–93.

    PubMed  CAS  Google Scholar 

  28. Dabrowska, R., Nowak, E., and Drabikowski, W. (1980) Comp. Biochem. Physiol., 65B, 75–83.

    CAS  Google Scholar 

  29. Szent-Gyorgyi, A. G. (1949) Biol. Bull., 96, 140–161.

    CAS  PubMed  Google Scholar 

  30. Borovikov, Yu. S., and Gusev, N. B. (1983) Eur. J. Biochem., 136, 363–369.

    Article  PubMed  CAS  Google Scholar 

  31. Nowak, E., Borovikov, Yu. S., and Dabrowska, R. (1989) Biochim. Biophys. Acta, 23, 289–292.

    Google Scholar 

  32. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  33. Goody, R. S., and Hofmann, W. (1980) J. Muscle Res. Cell Motil., 1, 101–115.

    PubMed  CAS  Google Scholar 

  34. Roopnarine, O., and Thomas, D. D. (1996) Biophys. J., 70, 2795–2806.

    PubMed  CAS  Google Scholar 

  35. Tregear, R., and Mendelson, R. A. (1975) Biophys. J., 15, 455–467.

    PubMed  CAS  Google Scholar 

  36. Borovikov, Yu. S., Dedova, I. V., dos Remedios, C. G., Vikhoreva, N. N., Vikhorev, P. G., Avrova, S. V., Hazlett, T. L., and van der Meer, B. W. (2004) Biophys. J., 86, 3020–3029.

    PubMed  CAS  Google Scholar 

  37. Lorenz, M., Popp, D., and Holmes, K. C. (1993) J. Mol. Biol., 234, 826–836.

    Article  PubMed  CAS  Google Scholar 

  38. Borejdo, J., Shepard, A., Dumka, D., Akopova, I., Talent, J., Malka, A., and Burghardt, T. P. (2004) Biophys. J., 86, 2308–2317.

    PubMed  CAS  Google Scholar 

  39. Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y., and Amemiya, Y. (1994) Biophys. J., 67, 2422–2435.

    Article  PubMed  CAS  Google Scholar 

  40. Huxley, H. E., Stewart, A., Sosa, H., and Irving, T. (1994) Biophys. J., 67, 2411–2421.

    PubMed  CAS  Google Scholar 

  41. Dantzig, J. A., Walker, J. W., Trentham, D. R., and Goldman, Y. E. (1988) Proc. Natl. Acad. Sci. USA, 85, 6716–6720.

    PubMed  CAS  Google Scholar 

  42. Kraft, T., Yu, L. C., Kuhn, H. J., and Brenner, B. (1992) Proc. Natl. Acad. Sci. USA, 89, 113-62–11366.

    CAS  Google Scholar 

  43. Pronina, O. E., Wrzosek, A., Dabrowska, R., and Borovikov, Yu. S. (2005) Biochemistry (Moscow), 70, 1140–1144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Borovikov.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 10, 2005, pp. 1376–1381.

Original Russian Text Copyright © 2005 by Khaimina, Wrzosek, Dabrowska, Borovikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaimina, S.S., Wrzosek, A., Dabrowska, R. et al. Orientation and Mobility of Actin in Different Intermediate States of the ATP Hydrolysis Cycle. Biochemistry (Moscow) 70, 1136–1139 (2005). https://doi.org/10.1007/s10541-005-0236-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0236-7

Key words

Navigation