biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 60:219-225, 2016 | DOI: 10.1007/s10535-016-0589-3

Structural effects on Cattleya xanthina leaves cultivated in vitro and acclimatized ex vitro

A. P. Lando1,*, M. R. Wolfart2, P. C. P. Fermino Jr.3, M. Santos4
1 Graduate Program in Plant Genetic Resources, Federal University of Santa Catarina, Florianópolis, Brazil
2 Graduate Program in Fungi, Algae and Plants, Federal University of Santa Catarina, Florianópolis, Brazil
3 Department of Natural and Social Science, Federal University of Santa Catarina, Curitibanos, Brazil
4 Department of Botany, Federal University of Santa Catarina, Florianópolis, Brazil

In vitro orchid micropropagation is efficient biotechnological strategy for conservation and commercial plantlet production. However, micropropagated plantlets generally need to adapt to survive severe changes in humidity, irradiance, and growing medium that accompany the transfer to ex vitro conditions. Such adaptive cellular changes would give insights into the phenotypic plasticity of the model plant Cattleya xanthina (L.) Van den Berg. Therefore, we aimed to evaluate structural changes in the leaves of C. xanthina cultivated in vitro and acclimatized ex vitro using qualitative and quantitative analyses. During acclimatization, we observed a higher accumulation of dry mass, a greater convexity of the outer surface of epidermal cells, an increased deposition of epicuticular waxes, a greater elongation of mesophyll parenchymatic cells, and finally, the presence of chloroplasts with organized thylakoids and well-developed grana. Stomatal density was not changed. Furthermore, a gradual acclimatization allows this species the best adaptation to a new environment.

Keywords: chlorophyll; chloroplast; epidermis; mesophyll; micropropagation; stomata; succulence
Subjects: in vitro culture; ex vitro acclimatization; chlorophyll; chloroplast; epidermis; mesophyll; stomata; succulence; orchid; cell ultrastructure

Received: August 2, 2015; Revised: October 3, 2015; Accepted: October 19, 2015; Published: June 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lando, A.P., Wolfart, M.R., Fermino, P.C.P., & Santos, M. (2016). Structural effects on Cattleya xanthina leaves cultivated in vitro and acclimatized ex vitro. Biologia plantarum60(2), 219-225. doi: 10.1007/s10535-016-0589-3
Download citation

References

  1. Arditti, J., Ernst, R., Yam, T.W., Glabe, C.: The contributions of orchid mycorhizae fungi to seed germination: a speculative review. - Lindleyana 5: 249-255, 1990.
  2. Bacelar, E.A., Correia, C.M., Moutinho-Pereira, J.M., Gonçalves, B.C., Lopes, J.I., Torres Pereira, J.M.S.G.: Sclerophylly and leaf anatomical traits of five field-grown olive cultivares growing under drought conditions. - Tree Physiol. 24: 233-239, 2004. Go to original source...
  3. Brodersen, C.R., Vogelmann, T.C.: Do epidermal lens cells facilitate the absorptance of diffuse light? - Amer. J. Bot. 94: 1061-1066, 2007. Go to original source...
  4. Brutti, C., Rubio, E., Llorente, B., Apóstolo, N.: Artichoke leaf morphology and surface features in different micropropagation stages. - Biol. Plant 45: 197-204, 2002. Go to original source...
  5. Chandra, S., Bandopadhyay, R., Kumar, V., Chandra, R.: Acclimatization of tissue cultured plantlets: from laboratory to land. - Biotechnol. Lett 32: 1199-1205, 2010. Go to original source...
  6. Corrie, S., Tandon, P.: Propagation of Cymbidium giganteum Wall. through high frequency conversion of encapsulated protocorms under in vivo and in vitro conditions. - Indian J. exp. Biol 31: 61-64, 1993.
  7. Díaz-Pérez, J.C., Sutter, E.G., Shacke, K.A.: Acclimatization and subsequent gas-exchange, water relations, survival and growth of microcultured apple plantlets after transplanting them in soil. - Physiol. Plant. 95: 225-232, 1995. Go to original source...
  8. Dickison, W.C.: Integrative Plant Anatomy. - Harcourt Academic Press, San Diego 2000.
  9. Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriquí, M., Díaz-Espejo, A., Douthe, C., Dreyer, E., Ferrio, J.P., Gago, J., Gallé, A., Galmés, J., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pina, J.J., Pou, A., Ribas-Carbó, M., Tomás, M., Tosens, T., Warren, C.R.: Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. - Plant. Sci. 193: 70-84, 2012. Go to original source...
  10. Gerlach, D.: Botanische Mikrotechnik. [Botanical Micro-technique.] - Georg Thieme Verlag, Stuttgart 1984. [In German]
  11. Gerrits, P.O., Smid, L.: A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. - J. Microscopy 132: 81-85, 1983. Go to original source...
  12. Gutschick, V.P.: Biotic and abiotic consequences of differences in leaf structure. - New Phytol. 143: 3-18, 1999. Go to original source...
  13. Hazarika, B.N.: Acclimatization of tissue-cultured plants. - Curr. Sci. 85: 1704-1712, 2003.
  14. Hazarika, B.N.: Morphophysiological disorders in vitro culture of plants. - Sci. Hort. 108: 105-120, 2006. Go to original source...
  15. Hiscox, J.D., Israelstam, G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. - Can. J. Bot. 57: 1332-1334, 1979. Go to original source...
  16. Johansen, D.A.: Plant Microtechnique. - McGraw-Hill Book Company, New York 1940.
  17. Kapchina-Toteva, V., Dimitrova, M.A., Stefanova, M., Koleva, D., Kostov, K., Yordanova, Zh.P., Stefanov, D., Zhiponova, M.K.: Adaptive changes in photosynthetic performance and secondary metabolites during White dead nettle micropropagation. - J. Plant. Physiol. 171: 1344-1353, 2014. Go to original source...
  18. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in eletron microscopy. - J. cell. Biol. 27: 137-138, 1965.
  19. Khan, S., Kozai, T., Nguyen, Q., Kubota, C., Dhawan, V.: Growth and water relations of Paulownia fortunei under photomixotrophic and photoautrotrophic conditions. - Biol. Plant. 46: 161-166, 2003. Go to original source...
  20. Lambers, H., Chapin, F.S., Pons, T.L.: Plant Physiological Ecology. 2nd Ed. - Springer-Verlag, New York 2008. Go to original source...
  21. Mantovani, A.: A Method to improve leaf succulence qualification. - Braz. Arch. Biol. Technol. 42: 9-14, 1999. Go to original source...
  22. Morel, G.M., Wetmore, R.H.: Tissue culture of monocotyledons. - Amer. J. Bot. 38: 138-140, 1951. Go to original source...
  23. Murashige, T., Skoog, F.: A revised medium for rapid growth and biossays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  24. Naz, R., Anis, M., El Atta, H.A.: Micropropagation of Cassia occidentalis L. and the effect of irradiance on photosynthetic pigments and antioxidative enzymes. - Biol. Plant. 59: 1-10, 2015. Go to original source...
  25. Niinemets, U.: Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. - New Phytol. 144: 35-47, 1999. Go to original source...
  26. Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light acclimation need change in leaf anatomy? - Plant Cell Environ. 26: 505-512, 2003. Go to original source...
  27. Oguchi, R., Hikosaka, K., Hirose, T.: Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. - Plant Cell Environ. 28: 916-927, 2005. Go to original source...
  28. Osório, M.L., Osório, J., Romano, A.: Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. - Biol. Plant 54: 415-422, 2010. Go to original source...
  29. Parveen, S., Shahzad, A.: Somatic embryogenesis and plantlet regeneration of Cassia angustifolia from immature cotyledon-derived callus. - Biol. Plant. 58: 411-418, 2014. Go to original source...
  30. Pospí¹ilová, J., Synková, H., Haisel, D., Semorádová, ©.: Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid. - Acta Horticult. 748: 29-38, 2007. Go to original source...
  31. Pospí¹ilová, J., Tichá, I., Kadleèek, P., Haisel, D., Plzáková, ©.: Acclimatization of micropropagated plants to ex vitro conditions. - Biol. Plant. 42: 481-497, 1999. Go to original source...
  32. Silva, A.S., Oliveira, J.G., Cunha, M., Vitória, A.P.: Photosynthetic performance and anatomical adaptations in Byrsonima sericea DC. under contrasting light conditions in a remnant of the Atlantic forest. - Braz. J. Plant. Physiol. 22: 245-254, 2010. Go to original source...
  33. Van Telgen, H.J., Van Mil, A., Kunneman, B.: Effect of propagation and rooting condition on acclimatization of micropropagated plants. - Acta. bot. nederl. 41: 453-459, 1992. Go to original source...
  34. Vogelmann, T.C., Martin, G.: The functional significance of palisade tissue: penetration of directional versus diffuse light. - Plant Cell Environ. 16: 65-72, 1993. Go to original source...
  35. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  36. Wetzstein, H.Y., Sommer, H.E.: Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. - Amer. J. Bot. 69: 1579-1586, 1982. Go to original source...
  37. Wetzstein, H.Y., Sommer, H.E.: Scanning electron microscopy of in vitro cultured Liquidambar styraciflua plantlets during acclimatization. - J. amer. Soc. hort. Sci. 108: 475-480, 1983. Go to original source...
  38. Ziv, M., Chen, J.: The anatomy and morphology of tissue cultured plants. - In: George, E.F., Hall, M.A., Klerk, G.J. (ed.): Plant Propagation by Tissue Culture. Vol. 1. 3rd Ed. Pp. 465-478. Springer, Dordrecht 2008.