biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 57:433-441, 2013 | DOI: 10.1007/s10535-013-0323-3

Arabidopsis LIM proteins PLIM2a and PLIM2b regulate actin configuration during pollen tube growth

J. R. Ye1,*, L. M. Zhou2, M. L. Xu1
1 National Maize Improvement Center of China, China Agricultural University, Beijing, P.R. China
2 College of Life Sciences, Hebei United University, Tangshan, Hebei, P.R. China

The pollen tube grows rapidly, exclusively at its tip, to deliver its sperm for fertilization. The polarized tip growth of pollen tubes is dependent on the highly dynamic actin cytoskeleton. Plant LIM proteins (named after initials of containing proteins Lin11, Isl-1, and Mec-3) have been shown to regulate actin bundling in different cells, however, their roles in pollen tube growth have remained obscure. Here, we report the function of Arabidopsis LIM proteins PLIM2a and PLIM2b in pollen tube growth. The PLIM2a mutation resulted in short and swollen Arabidopsis pollen tube with defective actin bundles. The expression of the construct green fluorescent protein (GFP)-PLIM2b led to fluorescence of the actin bundles in germinating pollen and also the long actin bundles along the growing pollen tubes in Arabidopsis, but not of the short and sparse actin bundles that characterize the tip regions of the pollen tubes. There is a partially redundant function between PLIM2a and PLIM2b in the shank actin bundle organization during Arabidopsis pollen tube growth, as PLIM2b could rescue for the defective shank actin bundles in PLIM2a mutation pollen tubes. This report suggests critical roles of PLIM2a/PLIM2b in actin configuration during Arabidopsis pollen germination and tube growth.

Keywords: actin bundle; cytoskeleton; fertilization; green fluorescent protein; pollen germination
Subjects: LIM proteins; actin; pollen; pollen tube growth; cytoskeleton; fertilization; green fluorescent protein; mutant

Received: October 3, 2012; Accepted: January 7, 2013; Published: September 1, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ye, J.R., Zhou, L.M., & Xu, M.L. (2013). Arabidopsis LIM proteins PLIM2a and PLIM2b regulate actin configuration during pollen tube growth. Biologia plantarum57(3), 433-441. doi: 10.1007/s10535-013-0323-3
Download citation

References

  1. Arnaud, D., Dejardin, A., Leple, J.C., Lesage-Descauses, M.C., Pilate, G.: Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis, and Oryza sativa. - DNA Res. 14: 103-116, 2007. Go to original source...
  2. Baltz, R., Evrard, J.L., Domon, C., Steinmetz, A.: A LIM motif is present in a pollen-specific protein. - Plant Cell 4: 1465-1466, 1992. Go to original source...
  3. Baltz, R., Schmit, A.C., Kohnen, M., Hentges, F., Steinmetz, A.: Differential localization of the LIM domain protein PLIM1 in microspores and mature pollen grains from sunflower. - Sex. Plant Reprod. 12: 60-65, 1999. Go to original source...
  4. Bartles, J.R.: Parallel actin bundles and their multiple actinbundling proteins. - Curr. Opin. cell. Biol. 12: 72-78, 2000. Go to original source...
  5. Bechtold, N., Pelletier, G.: Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. - Methods mol. Biol. 82: 259-266, 1998. Go to original source...
  6. Cardenas, L., Lovy-Wheeler, A., Wilsen, K.L., Hepler, P.K. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. - Cell Motil. Cytoskel. 61: 112-127, 2005. Go to original source...
  7. Chen, T., Teng, N., Wu, X., Wang, Y., Tang, W., Samaj, J., Baluska, F., Lin, J.: Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. - Plant Cell Physiol. 48: 19-30, 2007. Go to original source...
  8. Cheung, A.Y., Duana, Q., Costad, S.S., Graafa, B.H., Stilioa, V.S., Feijod, J., Wu, H.M.: The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. - Mol. Plant 12: 1-17, 2008. Go to original source...
  9. Cheung, A.Y., Wu, H.M.: Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. - Plant Cell 16: 257-269, 2004. Go to original source...
  10. Cheung, A.Y., Wu, H.M.: Structural and signalling networks for the polar cell growth machinery in pollen tubes. - Annu. Rev. Plant Physiol. Plant mol. Biol. 59: 547-572, 2008. Go to original source...
  11. Eady, C., Lindsey, K., Twell, D.: The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. - Plant Cell 7: 65-74, 1995. Go to original source...
  12. Eliasson, A., Gass, N., Mundel, C., Baltz, R., Krauter, R., Evrard, J.L., Steinmetz, A.: Molecular and expression analysis of a LIM protein gene family from flowering plants. - Mol. gen. Genet. 264: 257-267, 2000. Go to original source...
  13. El-Assal, Salah El-Din, Le, J., Basu, D., Mallery, E.L., Szymanski, D.B.: DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. - Plant J. 38: 526-538, 2004. Go to original source...
  14. Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., Yang, Z.: A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. - J. cell. Biol. 169: 127-138, 2005. Go to original source...
  15. Huang, S., Robinson, R.C., Gao, L.Y., Matsumoto, T., Brunet, A., Blanchoin, L., Staiger, C.J.: Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. - Plant Cell 17: 486-501, 2005. Go to original source...
  16. Ingouff, M., Fitz, Gerald, J.N., Guerin, C., Robert, H., Sorensen, M.B., Van Damme, D., Geelen, D., Blanchoin, L., Berger, F.: Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. - Nat. cell. Biol. 7: 374-380, 2005. Go to original source...
  17. Kadrmas, J.L., Beckerle, M.C.: The LIM domain: from the cytoskeleton to the nucleus. - Nat. Rev. mol. cell. Biol. 5: 920-931, 2004. Go to original source...
  18. Kovar, D.R., Staiger, C.J., Weaver, E.A., McCurdy, D.W.: AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. - Plant J. 24: 625-636, 2000. Go to original source...
  19. Le, J., El-Assal, S.E.D., Basu, D., Saad, M.E., Szymanski, D.B.: Requirements for Arabidopsis AtARP2 and AtARP3 during epidermal development. - Curr. Biol. 13: 1341-1347, 2003. Go to original source...
  20. Li, H., Lin, Y.K., Rachel, M.H., Zhu, M.X., Yang, Z.B.: Control of pollen tube tip growth by a Rop GTPasedependent pathway that leads to tip-localized calcium influx. - Plant Cell 11: 1731-1742, 1999. Go to original source...
  21. Lovy-Wheeler, A., Cardenas, L., Kunkel, J.G., Hepler, P.K.: Differential organelle movement on the actin cytoskeleton in lily pollen tubes. - Cell Motil. Cytoskel. 64: 217-232, 2007. Go to original source...
  22. Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., Hepler, P.K.: Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. - Plant Cell 18: 2182-2193, 2006. Go to original source...
  23. Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., Hepler, P.K.: Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. - Planta 221: 95-104, 2005. Go to original source...
  24. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. - Plant Physiol. 15: 473-497, 1962. Go to original source...
  25. Papuga, J., Hoffmann, C., Dieterle, M., Moes, D., Moreau, F., Tholl, S., Steinmetz, A., Thomas, C.: Arabidopsis LIM Proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. - Plant Cell 22: 3034-3052, 2010. Go to original source...
  26. Puius, Y.A., Mahoney, N.M., Almo, S.C.: The modular structure of actin-regulatory proteins. - Curr. Opin. cell. Biol. 10: 23-34, 1998. Go to original source...
  27. Shimmen, T., Hamatani, M., Saito, S., Yokota, E., Mimura, T., Fusetani, N., Karaki, H.: Roles of actin filaments in cytoplasmic streaming and organization of transvacuolar strands in root hair cells of Hydrocharis. - Protoplasma 185: 188-193, 1995. Go to original source...
  28. Shimmen, T., Yokota, E.: Cytoplasmic streaming in plants. - Curr. Opin. cell. Biol. 16: 68-72, 2004. Go to original source...
  29. Skau, C.T., Courson, D.S., Bestful, A.J., Winkelman, J.D., Rock, R.S., Sirotkin, V., Kovar, D.R.: Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast. - J. biol. Chem. 286: 26964-26977, 2011. Go to original source...
  30. Snowman, B.N., Kovar, D.R., Shevchenko, G., Franklin-Tong, V.E., Staiger, C.J.: Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. - Plant Cell 14: 2613-2626, 2002. Go to original source...
  31. Thomas, C., Hoffmann, C., Dieterle, M., Van Troys. M., Ampe, C., Steinmetz, A.: Tobacco WLIM1 is a novel Factin binding protein involved in actin cytoskeleton remodeling. - Plant Cell 18: 2194-2206, 2006. Go to original source...
  32. Thomas. C., Moreau. F., Dieterle. M., Hoffmann. C., Gatti. S., Hofmann, C., Van Troys, M., Ampe, C., Steinmetz, A.: The LIM domains of WLIM1 define a new class of actin bundling modules. - J. biol. Chem. 282: 33599-33608, 2007. Go to original source...
  33. Tominaga, M., Yokota, E., Vidali, L., Sonobe, S., Hepler, P.K., Shimmen, T.: The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. - Planta 210: 836-843, 2000. Go to original source...
  34. Twell, D., Yamaguchi, J., McCormick, S.: Pollen-specific gene expression of two different tomato gene promoters during microsporogenesis. - Development 109: 705-713, 1990. Go to original source...
  35. Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J., McCormick, S.: Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. - Gene Dev. 5: 496-507, 1991. Go to original source...
  36. Vidali, L., Yokota, E., Cheung, A.Y., Shimmen, T., Hepler, P.K.: The 135kDa actin-bundling protein from Lilium longiflorum pollen is the plant homologue of villin. - Protoplasma 209: 283-291, 1999. Go to original source...
  37. Vidali, L., Rounds, C.M., Hepler, P.K., Bezanilla, M.: LifeactmEGFP reveals a dynamic apical F-actin network in tip growing plant cells. - PLoS ONE 4: e5744, 2009. Go to original source...
  38. Wang, H.J., Wan, A.R., Jauh, G.Y.: An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. - Plant Physiol. 147: 1619-1636, 2008. Go to original source...
  39. Winder, S.J.: Structural insights into actin-binding, branching and bundling proteins. - Curr. Opin. cell. Biol. 15: 14-22, 2003. Go to original source...
  40. Ye, J.R., Xu, M.L.: Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. - J. Plant. Physiol. 169: 516-522, 2012. Go to original source...
  41. Ye, J.R., Zheng, Y.Y., Yan, A., Chen, N.Z., Wang, Z.K., Huang, S.J., Yang, Z.B.: Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. - Plant Cell 21: 3868-3884, 2009. Go to original source...
  42. Yokota, E., Tominaga, M., Mabuchi, I., Tsuji, Y., Staiger, C.J., Oiwa, K., Shimmen, T.: Plant villin, lily P-135-ABP, possesses G-actin binding activity andaccelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. - Plant Cell Physiol. 46: 1690-1703, 2005. Go to original source...
  43. Yokota, E., Vidali, L., Tominaga, M., Tahara, H., Orii, H., Morizane, Y., Hepler, P.K., Shimmen, T.: Plant 115-kDa actin filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. - Plant Cell Physiol. 44: 1088-1099, 2003. Go to original source...