Skip to main content

Advertisement

Log in

Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants

  • Review
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV–visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA (2021) Green synthesis of zinc oxide nanoparticles using salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology 10(11):1075. https://doi.org/10.3390/biology10111075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8):809–816

    Google Scholar 

  • Ahmad W, Jaiswal KK, Soni S (2020) Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg Nano-Metal Chem 50(10):1032–1038. https://doi.org/10.1080/24701556.2020.1732419

    Article  CAS  Google Scholar 

  • Ahmed S, Saifullah, AhmedSwamiIkram MBLS (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7. https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  • Ahmed SH, Hameed RS, Yousif AM, Gazar ZH (2019) Study of anti-inflammatory and anti-microbial activity of green nanoparticles prepared from the water extract of lettuce Lactuca sativa. Res J Pharm Technol 12(12):5837–5840. https://doi.org/10.5958/0974-360X.2019.01011.4

    Article  Google Scholar 

  • Ahmed HE, Iqbal Y, Aziz MH, Atif M, Batool Z, Hanif A, Yaqub N, Farooq WA, Ahmad S, Fatehmulla A, Ahmad H (2021) Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules 26(15):4659. https://doi.org/10.3390/molecules26154659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed SS, Alqahtani AM, Alqahtani T, Alamri AH, Menaa F, Mani RK, Bharathi DR, Kavitha K (2022) Green synthesis, characterizations of zinc oxide nanoparticles from aqueous leaf extract of Tridax procumbens Linn and assessment of their anti-hyperglycemic activity in streptozoticin-induced diabetic rats. Materials 15(22):8202. https://doi.org/10.3390/ma15228202

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10(7):e0131178. https://doi.org/10.1371/journal.pone.0131178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375

    CAS  Google Scholar 

  • Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10. https://doi.org/10.1016/j.plaphy.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  • Al-Shmgani HS, Mohammed WH, Sulaiman GM, Saadoon AH (2017) Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol 45(6):1234–1240. https://doi.org/10.1080/21691401.2016.1220950

    Article  CAS  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B 146:52–57. https://doi.org/10.1016/j.jphotobiol.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  • Amini N, Amin G, Jafari Azar Z (2017) Green synthesis of silver nanoparticles using Avena sativa L extract. Nanomed Res J 2(1):57–63. https://doi.org/10.22034/nmrj.2017.23588

    Article  CAS  Google Scholar 

  • Amrulloh H, Fatiqin A, Simanjuntak W, Afriyani H, Annissa A (2021a) Bioactivities of nano-scale magnesium oxide prepared using aqueous extract of Moringa oleifera leaves as green agent. Adv Nat Sci Nanosci Nanotechnol 12(1):015006. https://doi.org/10.1088/2043-6254/abde39

    Article  CAS  ADS  Google Scholar 

  • Amrulloh H, Fatiqin A, Simanjuntak W, Afriyani H, Annissa A (2021b) Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa oleifera bark as green agents. J Multidisc Appl Nat Sci. https://doi.org/10.1088/2043-6254/abde39

    Article  Google Scholar 

  • Anadozie SO, Adewale OB, Fadaka AO, Afolabi OB, Roux S (2022) Synthesis of gold nanoparticles using extract of Carica papaya fruit: evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. Biocatal Agric Biotechnol 42:102348. https://doi.org/10.1016/j.bcab.2022.102348

    Article  CAS  Google Scholar 

  • Anbukkarasi V, Srinivasan R, Elangovan N (2015) Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int J Pharm Sci Rev Res 33(2):110–115

    CAS  Google Scholar 

  • Anbumani D, Vizhi Dhandapani K, Manoharan J, Babujanarthanam R, Bashir AKH, Muthusamy K, Alfarhan A, Kanimozhi K (2022) Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J KingSaudUniv Sci 34(3):101896. https://doi.org/10.1016/j.jksus.2022.101896

    Article  Google Scholar 

  • Andrade JD (1985) X-ray photoelectron spectroscopy (XPS). In: Andrade JD (ed) Surface and interfacial aspects of biomedical polymers. Springer, Boston, pp 105–195

    Google Scholar 

  • Andualem WW, Sabir FK, Mohammed ET, Belay HH, Gonfa BA (2020) Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J Nanotechnol. https://doi.org/10.1155/2020/2932434

    Article  Google Scholar 

  • Arabi N, Kianvash A, Hajalilou A, Abouzari-Lotf E, Abbasi-Chianeh V (2020) A facile and green synthetic approach toward fabrication of Alcea-and Thyme-stabilized TiO2 nanoparticles for photocatalytic applications. Arab J Chem 13(1):2132–2141

    CAS  Google Scholar 

  • Arif W, Rana NF, Saleem I, Tanweer T, Khan MJ, Alshareef SA, Sheikh HM, Alaryani FS, Al-Kattan MO, Alatawi HA, Menaa F (2022) Antibacterial activity of dental composite with ciprofloxacin loaded silver nanoparticles. Molecules 27(21):7182. https://doi.org/10.3390/molecules27217182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    CAS  Google Scholar 

  • Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415

    CAS  Google Scholar 

  • Aseyd Nezhad S, Es-haghi A, Tabrizi MH (2020) Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organomet Chem 34(2):e5314

    CAS  Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomásková I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne Prace Badawcze 76(4):350

    Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    CAS  PubMed  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    CAS  PubMed  ADS  Google Scholar 

  • Awwad A, Amer M (2020) Biosynthesis of copper oxide nanoparticles using Ailanthus altissima leaf extract and antibacterial activity. Chem Int 2020:8

    Google Scholar 

  • Azimi R, Feizi H, Hosseini MK (2013) Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). Not Sci Biol 5(3):325–331

    CAS  Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol 16(3):25

    CAS  Google Scholar 

  • Aziz WJ, Abid MA, Hussein EH (2020) Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Mater Technol 35(8):447–451

    CAS  ADS  Google Scholar 

  • Baazaoui N, Sghaier-Hammami B, Hammami SB, Khefacha R, Chaari S, Elleuch L, Messaoud M, Abdelly C (2021) A handbook guide to better use of nanoparticles in plants. Commun Soil Sci Plant Anal 52(4):287–321. https://doi.org/10.1080/00103624.2020.1836198

    Article  CAS  Google Scholar 

  • Bahram M, Mohammadzadeh E (2014) Green synthesis of gold nanoparticles with willow tree bark extract: a sensitive colourimetric sensor for cysteine detection. Anal Methods 6(17):6916–6924

    CAS  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum 7(1):679

    Google Scholar 

  • Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109(2):716–723

    CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    CAS  PubMed  ADS  Google Scholar 

  • Beinik I, Kratzer M, Wachauer A, Wang L, Piryatinski YP, Brauer G, Chen XY, Hsu YF, Djurišić AB, Teichert C (2013) Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM. Beilstein J Nanotechnol 4(1):208–217

    PubMed  PubMed Central  Google Scholar 

  • Bhagat DS, Gurnule WB, Pande SG, Kolhapure MM, Belsare AD (2020) Biosynthesis of gold nanoparticles for detection of dichlorvos residue from different samples. Mater Today Proc 29:763–767. https://doi.org/10.1016/j.matpr.2020.04.589

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    CAS  Google Scholar 

  • Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K, Balakumar C, Premkumar K, Prabu HG (2020) Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem 34(5):e5574. https://doi.org/10.1002/aoc.5574

    Article  CAS  Google Scholar 

  • Bootz A, Vogel V, Schubert D, Kreuter J (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57(2):369–375

    CAS  PubMed  Google Scholar 

  • Brice-Profeta S, Arrio MA, Tronc E, Menguy N, Letard I, Dit Moulin CC, Nogues M, Chanéac C, Jolivet JP, Sainctavit P (2005) Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mater 288:354–365. https://doi.org/10.1016/j.jmmm.2004.09.120

    Article  CAS  ADS  Google Scholar 

  • Bundschuh T, Knopp R, Kim JI (2001) Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems. Colloids Surf A 177(1):47–55

    CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7(5):e34783. https://doi.org/10.1371/journal.pone.0034783

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    CAS  Google Scholar 

  • Cai L, Cai L, Jia H, Liu C, Wang D, Sun X (2020) Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J Hazard Mater 393:122415. https://doi.org/10.1016/j.jhazmat.2020.122415

    Article  CAS  PubMed  Google Scholar 

  • Cañas JE, Long M, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem Int J 27(9):1922–1931

    Google Scholar 

  • Carney RP, Kim JY, Qian H, Jin R, Mehenni H, Stellacci F, Bakr OM (2011) Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat Commun 2(1):1–8. https://doi.org/10.1038/ncomms1338

    Article  CAS  Google Scholar 

  • Carr B, Wright M (2012) Nanoparticle tracking analysis. a review of applications and usage in the analysis of exosomes and microvesicles. NanoSight Ltd 8:1–10

    Google Scholar 

  • Chao JB, Liu JF, Yu SJ, Feng YD, Tan ZQ, Liu R, Yin YG (2011) Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal Chem 83(17):6875–6882. https://doi.org/10.1021/ac201086a

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Biosynthesis of silver nanoparticles using Saccharum officinarum and its antimicrobial activity. Micro Nano Lett 7(7):646–650

    Google Scholar 

  • Chauhan A, Kaith B (2011) X-ray diffraction studies and assessment of Roselle graft-copolymers. Malays Polym J 6:155–164. https://doi.org/10.1080/15440478.2014.984052

    Article  Google Scholar 

  • Chauhan A, Kaith B (2012) X-ray powder diffraction studies to evaluate the transition in graft copolymers procured from roselle fiber. J Nat Fibers 9(2):87–97

    CAS  Google Scholar 

  • Chauhan RP, Gupta C, Prakash D (2012) Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 1:6–10

    Google Scholar 

  • Chen J, Li Y, Fang G, Cao Z, Shang Y, Alfarraj S, Alharbi SA, Li J, Yang S, Duan X (2021) Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem 14(3):103000

    CAS  Google Scholar 

  • Choi HG (2021) Effect of TiO2 nanoparticles on the yield and photophysiological responses of cherry tomatoes during the rainy season. Horticulturae 7(12):563. https://doi.org/10.3390/horticulturae7120563

    Article  Google Scholar 

  • Chokkareddy R, Redhi GG, Kanchi S, Ahmed S (2018) Green synthesis of metal nanoparticles and its reaction mechanisms. In: Kanchi S, Ahmed S (eds) Green metal nanoparticles. Wiley, Hoboken, pp 113–139

    Google Scholar 

  • Cui D, Zhang P, Ma YH, He X, Li YY, Zhao YC, Zhang ZY (2014) Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J Zhejiang UnivSci A (appl Phys Eng). https://doi.org/10.1631/jzus.A1400114

    Article  Google Scholar 

  • Dağhan HATİCE (2018) Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Appl Ecol Environ Res 16:6873

    Google Scholar 

  • Dar P, Waqas U, Hina A, Anwar J, Dar A, Khan Z, Shafqat T (2016) Biogenic synthesis, characterization of silver nanoparticles using Multani mitti (Fullers Earth), Tomato (Solanum lycopersicum) seeds, Rice Husk (Oryza sativa) and evaluation of their potential antimicrobial activity. J Chem Soc Pak 38(4):665–674

    CAS  Google Scholar 

  • De Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, Van der Meeren P, Van Laethem M (1991) Particle sizing by photon correlation spectroscopy part I: monodisperse latices: influence of scattering angle and concentration of dispersed material. Part Part Syst Charact 8(1–4):179–186

    Google Scholar 

  • De Souza-Torres A, Govea-Alcaide E, Gómez-Padilla E, Masunaga SH, Effenberger FB, Rossi LM, López-Sánchez R, Jardim RF (2021) Fe3O4 nanoparticles and Rhizobium inoculation enhance nodulation, nitrogen fixation and growth of common bean plants grown in soil. Rhizosphere 17:100275

    Google Scholar 

  • de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174. https://doi.org/10.1351/pac-con-12-09-05

    Article  Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155(2):283–286. https://doi.org/10.1007/s12011-013-9788-3

    Article  CAS  PubMed  Google Scholar 

  • Devi NN, Shankar PD, Femina W, Paramasivam T (2012) Antimicrobial efficacy of green synthesized silver nanoparticles from the medicinal plant Plectranthus amboinicus. Int J Pharm Sci Rev Res 12(1):164–168

    Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1–e1. https://doi.org/10.4081/nd.2013.e1

    Article  CAS  Google Scholar 

  • Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11:902

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1–15

    Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. https://doi.org/10.1021/es302973y

    Article  CAS  PubMed  ADS  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68(3):525–531

    CAS  Google Scholar 

  • Dongargaonkar AA, Clogston JD (2018) Quantitation of surface coating on nanoparticles using thermogravimetric analysis. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, New York, pp 57–63

    Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    CAS  PubMed  Google Scholar 

  • Dulta K, Ağçeli GK, Chauhan P, Chauhan PK (2021) Biogenic production and characterization of CuO nanoparticles by Carica papaya leaves and its biocompatibility applications. J Inorg Organomet Polym Mater 31(4):1846–1857. https://doi.org/10.1007/s10904-020-01837-7

    Article  CAS  Google Scholar 

  • Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, Yesilbag Tonga G, Jackson LC, Rotello VM, Vachet RW (2016) Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10(5):5536–5542

    CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49. https://doi.org/10.1002/tox.20610

    Article  CAS  PubMed  ADS  Google Scholar 

  • Essien ER, Atasie VN, Okeafor AO, Nwude DO (2020) Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett 10(1):43–48. https://doi.org/10.1007/s40089-019-00290-w

    Article  CAS  Google Scholar 

  • Faisal S, Jan H, Shah SA, Shah S, Rizwan M, Zaman N, Hussain Z, Uddin MN, Bibi N, Khattak A, Khan W (2021) Bio-catalytic activity of novel Mentha arvensis intervened biocompatible magnesium oxide nanomaterials. Catalysts 11(7):780

    CAS  Google Scholar 

  • Falco WF, Botero ER, Falcão EA, Santiago EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol, A 225(1):65–71. https://doi.org/10.1016/j.jphotochem.2011.09.027

    Article  CAS  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37

    CAS  Google Scholar 

  • Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146(1):101–106. https://doi.org/10.1007/s12011-011-9222-7

    Article  CAS  PubMed  Google Scholar 

  • Fernando SID, Judan Cruz KG (2020) Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of quorum sensing-linked AhyR gene in Aeromonas hydrophila. SN Appl Sci 2(4):1–8

    Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finiuk N, Buziashvili A, Burlaka O, Zaichenko A, Mitina N, Miagkota O, Lobachevska O, Stoika R, Blume Y, Yemets A (2017) Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell Tiss Organ Cult 131:27–39

    CAS  Google Scholar 

  • Foner S (1996) The vibrating sample magnetometer: experiences of a volunteer. J Appl Phys 79(8):4740–4745. https://doi.org/10.1063/1.361657

    Article  CAS  ADS  Google Scholar 

  • Fortuni B, Inose T, Ricci M, Fujita Y, Van Zundert I, Masuhara A, Fron E, Mizuno H, Latterini L, Rocha S, Uji-i H (2019) Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci Rep 9(1):2666

    PubMed  PubMed Central  ADS  Google Scholar 

  • Fouda A, Eid AM, Abdel-Rahman MA, El-Belely EF, Awad MA, Hassan SED, Al-Faifi ZE, Hamza MF (2022) Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.849921

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1):239–253

    CAS  PubMed  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    CAS  PubMed  Google Scholar 

  • Gao Y, Xu D, Ren D, Zeng K, Wu X (2020) Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: a comparison study. Lwt 126:109297. https://doi.org/10.1016/j.lwt.2020.109297

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160

    CAS  Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. J Hortic Sci Biotechnol 89(6):712–718. https://doi.org/10.1080/14620316.2014.11513142

    Article  CAS  Google Scholar 

  • Ghosh D, Chattopadhyay N (2015) Gold and silver nanoparticles based superquenching of fluorescence: a review. J Lumin 160:223–232

    CAS  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Gene Toxicol Environ Mutagenesis 807:25–32. https://doi.org/10.1016/j.mrgentox.2016.07.006

    Article  CAS  Google Scholar 

  • Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113):1456–1465

    CAS  PubMed  ADS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gomez-Garay A, Pintos B, Manzanera JA, Lobo C, Villalobos N, Martín L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol Trace Elem Res 161(1):143–150

    CAS  PubMed  Google Scholar 

  • Gondwal M, Joshi Nee PG (2018) Synthesis and catalytic and biological activities of silver and copper nanoparticles using Cassia occidentalis. Int J Biomater. https://doi.org/10.1155/2018/6735426

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4(3):1–11

    Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    CAS  Google Scholar 

  • Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A, Meyer G (2012) Bond-order discrimination by atomic force microscopy. Science 337(6100):1326–1329

    CAS  PubMed  ADS  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nanoparticles and plant growth. Acta Hortic 1037:795–800. https://doi.org/10.17660/ActaHortic.2014.1037.105

    Article  Google Scholar 

  • Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1140–1144

    CAS  ADS  Google Scholar 

  • Gupta V, Gupta AR, Kant V (2013) Synthesis, characterization and biomedical application of nanoparticles. Sci Int 1(5):167–174

    Google Scholar 

  • Hafeez M, Arshad R, Khan J, Akram B, Ahmad MN, Hameed MU, Haq S (2019) Populus ciliata mediated synthesis of copper oxide nanoparticles for potential biological applications. Mater Res Exp 6(5):055043. https://doi.org/10.1088/2053-1591/ab0601

    Article  CAS  Google Scholar 

  • Haghighi M, Teixeira da Silva JA (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17:201–208. https://doi.org/10.1007/s12892-014-0057-6

    Article  Google Scholar 

  • Hammami I, Alabdallah NM (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci 33(7):101560

    Google Scholar 

  • Haq MNU, Shah GM, Menaa F, Khan RA, Althobaiti NA, Albalawi AE, Alkreathy HM (2022) Green silver nanoparticles synthesized from Taverniera couneifolia elicits effective anti-diabetic effect in alloxan-induced diabetic wistar rats. Nanomaterials. https://doi.org/10.3390/nano12071035

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695

    CAS  Google Scholar 

  • Herguth WR, Nadeau G (2004) Applications of scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) to practical tribology problems. Herguth Lab Inc, Vallejo

    Google Scholar 

  • Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat Nanotechnol 6(9):534–534

    CAS  PubMed  ADS  Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005a) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260. https://doi.org/10.1385/BTER:104:3:249

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005b) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1):269–279

    CAS  PubMed  Google Scholar 

  • Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS (2022) Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. J Saudi Chem Soc 26(2):101419. https://doi.org/10.1016/j.jscs.2022.101419

    Article  CAS  Google Scholar 

  • Huang X, McLean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77(19):6225–6228

    CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:1–24

    CAS  Google Scholar 

  • Ifeanyichukwu UL, Fayemi OE, Ateba CN (2020) Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules 25(19):4521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imtiaz H, Shiraz M, Mir AR, Hayat S (2022) Green synthesis of nanoparticles and their effect on plant growth and development: a review. Plant Arch 22(1):09725210

    Google Scholar 

  • Imtiaz H, Shiraz M, Mir AR, Siddiqui H, Hayat S (2023) Nano-priming techniques for plant physio-biochemistry and stress tolerance. J Plant Growth Regul 1–21

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Shah MR, Khan MA (2019) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 12(8):2914–2925

    Google Scholar 

  • Izvle NTOZU, Trave KL (2020) Improvement of titanium dioxide nanoparticle synthesis with green chemistry methods using lemongrass (Cymbopogon citratus) extract. Mater Tehnol 54(6):755–759

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hort Agrobot Cluj 41(1):201–207

    CAS  Google Scholar 

  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytorem 15(2):142–153

    CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    CAS  PubMed  Google Scholar 

  • Javadi F, Yazdi MET, Baghani M, Es-haghi A (2019) Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Exp 6(6):065408

    CAS  Google Scholar 

  • Jayarambabu N, Kumari BS, Rao KV, Prabhu YT (2015) Beneficial role of zinc oxide nanoparticles on green crop production. Int J Multidiscip Adv Res Trends 2:273–282

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 90:78–84

    CAS  ADS  Google Scholar 

  • Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 95(2):217–227

    CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    CAS  PubMed  ADS  Google Scholar 

  • Jung H, Gulis G, Gupta S, Redding K, Gosztola DJ, Wiederrecht GP, Stroscio MA, Dutta M (2010) Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I. J Phys Chem B 114(45):14544–14549

    CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):9

    Google Scholar 

  • Karimi J, Mohsenzadeh S (2015) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth React Inorg Met-Org Nano-Met Chem 45(6):895–898

    CAS  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7(3):70–77

    CAS  PubMed  Google Scholar 

  • Karuppannan SK, Ramalingam R, Khalith SM, Dowlath MJH, Raiyaan GD, Arunachalam KD (2021) Characterization, antibacterial and photocatalytic evaluation of green synthesized copper oxide nanoparticles. Biocatal Agric Biotechnol 31:101904

    CAS  Google Scholar 

  • Kasi SD, Ramasamy JM, Nagaraj D, Santiyagu V, Ponraj JS (2021) Biogenic synthesis of copper oxide nanoparticles using leaf extracts of Cissus quadrangularis and Piper betle and its antibacterial effects. Micro Nano Lett 16(8):419–424

    CAS  Google Scholar 

  • Keijok WJ, Pereira RHA, Alvarez LAC, Prado AR, da Silva AR, Ribeiro J, de Oliveira JP, Guimarães MCC (2019) Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep 9(1):1–10

    CAS  Google Scholar 

  • Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G (2020) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 11(1):37–44

    PubMed  Google Scholar 

  • Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139

    CAS  Google Scholar 

  • Khan A, Shabir D, Ahmad P, Khandaker MU, Faruque MRI, Din IU (2020a) Biosynthesis and antibacterial activity of MgO-NPs produced from Camellia-sinensis leaves extract. Mater Res Exp 8(1):015402

    Google Scholar 

  • Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI, Tahir MB, Kabli MR (2020b) Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci 10(7):2351–2364

    CAS  ADS  Google Scholar 

  • Khan ZUH, Shah NS, Iqbal J, Khan AU, Imran M, Alshehri SM, Muhammad N, Sayed M, Ahmad N, Kousar A, Ashfaq M (2020c) Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: Ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. J Mol Liq 319:114114

    CAS  Google Scholar 

  • Khater MS, Osman YAH (2015) Influence of TiO2 nanoparticles on growth, chemical constituents and toxicity of fennel plant. AJNSA 48:178–186

    Google Scholar 

  • Khodakovskaya MV, Lahiani MH (2016) Role of nanoparticles for delivery of genetic material. In: Kole C, Kumar DS, Khodakovskaya MV (eds) Plant nanotechnology. Springer, Cham, pp 257–261

    Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    CAS  PubMed  ADS  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    CAS  PubMed  Google Scholar 

  • Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Mater Sci Eng C 22(2):141–146

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Kim H, Carney RP, Reguera J, Ong QK, Liu X, Stellacci F (2012) Synthesis and characterization of Janus gold nanoparticles. Adv Mater 24(28):3857–3863

    CAS  PubMed  Google Scholar 

  • Kitamori T, Yokose K, Sakagami M, Sawada T (1989) Detection and counting of ultrafine particles in ultrapure water using laser breakdown acoustic method. Jpn J Appl Phys 28(7R):1195

    CAS  ADS  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials. Wiley, Hoboken, p 992

    Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228

    CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):1–10

    Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells: tuning photoresponse through size and shape control of CdSe−TiO2 architecture. J Am Chem Soc 130(12):4007–4015

    CAS  PubMed  Google Scholar 

  • Korotkova AM, Borisovna PO, Aleksandrovna GI, Bagdasarovna KD, Vladimirovich BD, Vladimirovich KD, Alexandrovich FA, Yurievna KM, Nikolaevna BE, Aleksandrovich KD, Yurievich CM (2019) “ Green” synthesis of cerium oxide particles in water extracts Petroselinum crispum. Curr Nanomater 4(3):176–190

    CAS  Google Scholar 

  • Kreuter J (1991) Peroral administration of nanoparticles. Adv Drug Deliv Rev 7(1):71–86

    CAS  Google Scholar 

  • Krpetic Z, Davidson AM, Volk M, Levy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7(10):8881–8890

    CAS  PubMed  Google Scholar 

  • Kulkarni VS (2009) Handbook of non-invasive drug delivery systems: science and technology. Elsevier

    Google Scholar 

  • Kumar SP, Darshit P, Ankita P, Palak D, Ram P, Pradip P, Kaliaperumal S (2011) Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotech 10(41):8122–8130

    Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    PubMed  ADS  Google Scholar 

  • Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562–566

    Google Scholar 

  • Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett 236:19–22

    Google Scholar 

  • Kumar CR, Betageri VS, Nagaraju G, Suma BP, Kiran MS, Pujar GH, Latha MS (2020) One-pot synthesis of ZnO nanoparticles for nitrite sensing, photocatalytic and antibacterial studies. J Inorg Organomet Polym Mater 30(9):3476–3486

    CAS  Google Scholar 

  • Lade BD, Shanware AS (2020) Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles. In: Shabatina T, Bochenkov V (eds) Smart nanosystems for biomedicine, optoelectronics and catalysis. IntechOpen, London

    Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    CAS  PubMed  Google Scholar 

  • Lalau CM, Mohedano RDA, Schmidt ÉC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini DS, Matias WG (2015) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 252(1):221–229

    CAS  PubMed  Google Scholar 

  • Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:1–10

    CAS  Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75(13–15):722–734

    CAS  PubMed  Google Scholar 

  • Lateef A (2018) Synthesis and characterization of nanocomposites as slow release environment friendly fertilizers. University of the Punjab, Lahore

    Google Scholar 

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci 3(7):749–760

    CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171

    CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem Int J 27(9):1915–1921

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem Int J 29(3):669–675

    CAS  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    CAS  PubMed  ADS  Google Scholar 

  • Lee SH, Salunke BK, Kim BS (2014) Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. Biotechnol Bioprocess Eng 19(1):169–174

    CAS  Google Scholar 

  • Lee X, Shameli K, Miyake K, Kuwano M, Ahmad Khairudin BN, Mohamad BSE, Yew YP (2016) Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 2016:1–7

    Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119(1):68–76

    PubMed  Google Scholar 

  • Li J, Chang PR, Huang J, Wang Y, Yuan H, Ren H (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13(8):5561–5567

    CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840(5):1574–1582

    CAS  PubMed  Google Scholar 

  • Li W, Zheng Y, Zhang H, Liu Z, Su W, Chen S, Liu Y, Zhuang J, Lei B (2016) Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl Mater Interfaces 8(31):19939–19945

    CAS  PubMed  Google Scholar 

  • Li X, Ke M, Zhang M, Peijnenburg WJGM, Fan X, Xu J, Zhang Z, Lu T, Fu Z, Qian H (2018) The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: growth, photosynthesis and antioxidant system. Environ Pollut 232:212–219

    CAS  PubMed  Google Scholar 

  • Li W, Qu F, Chen Y, Sun Y, Zhang J, Xie G, You Q, Xu H (2021) Antimicrobial activity of sliver nanoparticles synthesized by the leaf extract of Cinnamomum camphora. Biochem Eng J 172:108050

    CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    CAS  PubMed  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    PubMed  Google Scholar 

  • Liu R, Lead JR (2006) Partial validation of cross flow ultrafiltration by atomic force microscopy. Anal Chem 78(23):8105–8112

    CAS  PubMed  Google Scholar 

  • Liu JF, Chao JB, Liu R, Tan ZQ, Yin YG, Wu Y, Jiang GB (2009) Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem 81(15):6496–6502

    CAS  Google Scholar 

  • Llompart M, Celeiro M, Dagnac T (2019) Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal Chem 116:136–150

    CAS  Google Scholar 

  • Logambal S, Maheswari C, Chandrasekar S, Thilagavathi T, Inmozhi C, Panimalar S, Bassyouni FA, Uthrakumar R, Gawwad MRA, Aljowaie RM, Al Farraj DA (2022) Synthesis and characterizations of CuO nanoparticles using Couroupita guianensis extract for and antimicrobial applications. J King Saud Univ Sci 34(3):101910

    Google Scholar 

  • Lomelí-Rosales DA, Zamudio-Ojeda A, Reyes-Maldonado OK, López-Reyes ME, Basulto-Padilla GC, Lopez-Naranjo EJ, Zuñiga-Mayo VM, Velázquez-Juárez G (2022) Green synthesis of gold and silver nanoparticles using leaf extract of Capsicum chinense plant. Molecules 27(5):1692

    PubMed  PubMed Central  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    PubMed  PubMed Central  ADS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    PubMed  PubMed Central  Google Scholar 

  • López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014c) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    CAS  Google Scholar 

  • Lu W, Shen Y, Xie A, Zhang W (2010) Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(13):1828–1833

    CAS  ADS  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PFX, Ji R, Zhao L (2020) Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sci Nano 7(6):1692–1703

    CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    CAS  PubMed  ADS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    CAS  Google Scholar 

  • Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, Pitchaimuthu S (2019) Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett 239:40–44

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol. https://doi.org/10.1155/2011/696535

    Article  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    PubMed  PubMed Central  Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Horticult Plants 3(1):25–32

    Google Scholar 

  • Majedi SM, Kelly BC, Lee HK (2014) Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters. Anal Chim Acta 814:39–48

    CAS  PubMed  Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart. https://doi.org/10.1155/2014/302429

    Article  Google Scholar 

  • Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Reddy BVS, Raju BDP (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct 6(1):181–186

    Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164(2):537–547

    CAS  PubMed  Google Scholar 

  • Marusenko Y, Shipp J, Hamilton GA, Morgan JL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ Pollut 174:150–156

    CAS  PubMed  Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF, De Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6(1):19768

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mathew SS, Sunny NE, Shanmugam V (2021) Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorg Chem Commun 126:108485

    CAS  Google Scholar 

  • Mavrocordatos D, Perret D, Leppard GG (2007) Strategies and advances in the characterisation of environmental colloids by electron microscopy. Iupac Ser Anal Phys Chem Environ Syst 10:345

    CAS  Google Scholar 

  • Medda S, Hajra A, Dey U, Bose P, Mondal NK (2015) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 5:875–880

    CAS  Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech 6(2):1–10

    Google Scholar 

  • Mingyu S, Xiao W, Chao L, Chunxiang Q, Xiaoqing L, Liang C, Hao H, Fashui H (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119(2):183–192

    Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9(77):3514–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    CAS  PubMed  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. Emerging technologies and management of crop stress tolerance. Academic press, Cambridge, pp 159–180

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    CAS  PubMed  Google Scholar 

  • Modena MM, Rühle B, Burg TP, Wuttke S (2019) Nanoparticle characterization: nanoparticle characterization: what to measure? Adv Mater 31(32):1970226

    Google Scholar 

  • Modi S, Yadav VK, Choudhary N, Alswieleh AM, Sharma AK, Bhardwaj AK, Khan SH, Yadav KK, Cheon JK, Jeon BH (2022) Onion peel waste mediated-green synthesis of zinc oxide nanoparticles and their phytotoxicity on mung bean and wheat plant growth. Materials 15(7):2393

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mohamed JMM, Alqahtani A, Kumar TVA, Fatease AA, Alqahtani T, Krishnaraju V, Ahmad F, Menaa F, Alamri A, Muthumani R, Vijaya R (2021) Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in-vitro characterizations. Molecules 27(1):110. https://doi.org/10.3390/molecules27010110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal AK, Mondal S, Samanta S, Mallick S (2011) Synthesis of ecofriendly silver nanoparticle from plant latex used as an important taxonomic tool for phylogenetic interrelationship advances in bioresearch. Synthesis 31:33

    Google Scholar 

  • Morales G, Campillo G, Vélez E, Osorio J, Urquijo J, Velásquez ÁA (2019) Green synthesis of magnetic nanoparticles using leaf extracts of Aloe vera and Kalanchoe daigremontiana to remove divalent mercury from natural waters. In: Journal of physics: conference series, vol. 1247, No. 1. IOP Publishing, p. 012021

  • Moreno-Martin G, Sanz-Landaluze J, Madrid Y (2006) Nanospeciation analysis using field flow fractionation. Encyclopedia of analytical chemistry: applications, theory and instrumentation. Wiley, Hoboken, pp 1–24

    Google Scholar 

  • Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci 1(2):328

    CAS  Google Scholar 

  • Mortada WI, Hassanien MM, El-Asmy AA (2014) Cloud point extraction of some precious metals using Triton X-114 and a thioamide derivative with a salting-out effect. Egypt J Basic Appl Sci 1(3–4):184–191

    Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springerplus 2:1–5

    Google Scholar 

  • Mucalo MR, Bullen CR, Manley-Harris M, McIntire TM (2002) Arabinogalactan from the Western larch tree: a new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mater Sci 37(3):493–504

    CAS  ADS  Google Scholar 

  • Mühlen AZ, Mühlen EZ, Niehus H, Mehnert W (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13(9):1411–1416

    PubMed  Google Scholar 

  • Muñoz-Sandoval E, López-Urias F, Diaz-Ortiz A, Terrones M, Reyes-Reyes M, Morán-López JL (2004) Magnetic and transport properties of Fe nanowires encapsulated in carbon nanotubes. J Magn Magn Mater 272:E1255–E1257

    ADS  Google Scholar 

  • Muthuvel A, Jothibas M, Mohana V, Manoharan C (2020) Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun 119:108086

    CAS  Google Scholar 

  • Mydeen SS, Kumar RR, Kottaisamy M, Vasantha VS (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. J Saudi Chem Soc 24(5):393–406

    Google Scholar 

  • Nadaf NY, Kanase SS (2019) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem 12(8):4806–4814

    CAS  Google Scholar 

  • Naghdi S, Sajjadi M, Nasrollahzadeh M, Rhee KY, Sajadi SM, Jaleh B (2018) Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J Taiwan Inst Chem Eng 86:158–173

    CAS  Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220

    CAS  PubMed  Google Scholar 

  • Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41:5723–5730

    CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    CAS  PubMed  ADS  Google Scholar 

  • Nawaz A, Ali SM, Rana NF, Tanweer T, Batool A, Webster TJ, Menaa F, Riaz S, Rehman Z, Batool F, Fatima M (2021) Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: an in vivo assessment. Nanomaterials 11(11):3152. https://doi.org/10.3390/nano11113152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejatzadeh-Barandozi F, Darvishzadeh F, Aminkhani A (2014) Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Org Med Chem Lett 4(1):1–6

    Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42(6):458–463

    CAS  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5(1):11618

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    CAS  PubMed  Google Scholar 

  • Ochieng PE, Iwuoha E, Michira I, Masikini M, Ondiek J, Githira P, Kamau GN (2015) Green route synthesis and characterization of ZnO nanoparticles using Spathodea campanulata. Int J Biochem Phys 23:53–61

    Google Scholar 

  • Ocsoy I, Tasdemir D, Mazicioglu S, Celik C, Katı A, Ulgen F (2018) Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 212:45–50

    CAS  Google Scholar 

  • Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac M (2020) Nanocomposites: a brief review. Heal Technol 10:51–59

    Google Scholar 

  • Pachaiappan R, Rajendran S, Ramalingam G, Vo DVN, Priya PM, Soto-Moscoso M (2021) Green synthesis of zinc oxide nanoparticles by Justicia adhatoda leaves and their antimicrobial activity. Chem Eng Technol 44(3):551–558

    CAS  Google Scholar 

  • Pagar K, Ghotekar S, Pagar T, Nikam A, Pansambal S, Oza R, Sanap D, Dabhane H (2020a) Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations. Asian J Nanosci Mater 3(1):15–23

    CAS  Google Scholar 

  • Pagar T, Ghotekar S, Pansambal S, Pagar K, Oza R (2020b) Biomimetic synthesis of CuO nanoparticle using Capparis decidua and their antibacterial activity. Adv J Sci Eng 1(4):133–137

    Google Scholar 

  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 2011:228–234

    Google Scholar 

  • Pandey AC, Sanjay S, Yadav S (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497

    CAS  Google Scholar 

  • Pandiyan N, Murugesan B, Sonamuthu J, Samayanan S, Mahalingam S (2019) PF6 ionic liquid mediated green synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities. Ceram Int 45(9):12138–12148

    CAS  Google Scholar 

  • Panwar J (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. International conference on environmental research and technology (ICERT). University of Sains, Pinang

    Google Scholar 

  • Parida UK, Bindhani BK, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 1(04):93

    CAS  Google Scholar 

  • Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Cluster Sci 26(3):693–701

    CAS  Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil TP, Vibhute AA, Patil SL, Dongale TD, Tiwari AP (2023) Green synthesis of gold nanoparticles via Capsicum annum fruit extract: characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Appl Surf Sci Adv 13:100372

    Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vignaradiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, Heidelberg, pp 301–309

    Google Scholar 

  • Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2(2):123–131

    CAS  Google Scholar 

  • Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Rajesh K, Kyzas GZ (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107

    CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    PubMed  ADS  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 2011:155–169

    Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131

    CAS  PubMed  ADS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    CAS  Google Scholar 

  • Prashanth S, Menaka I, Muthezhilan R, Sharma NK (2011) Synthesis of plant-mediated silver nano particles using medicinal plant extract and evaluation of its anti microbial activities. Int J Eng Sci Technol 3:6235–6250

    Google Scholar 

  • Premkumar J, Sudhakar T, Dhakal A, Shrestha JB, Krishnakumar S, Balashanmugam P (2018) Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal Agric Biotechnol 15:311–316

    Google Scholar 

  • Priya MM, Selvi BK, Paul JA (2011) Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Biostruct 6(2):10

    Google Scholar 

  • Priya GS, Kanneganti A, Kumar KA, Rao KV, Bykkam S (2014) Biosynthesis of Cerium oxide nanoparticles using Aloe barbadensis miller gel. Int J Sci Res Publ 4(6):199–224

    Google Scholar 

  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B 190:86–97

    CAS  PubMed  Google Scholar 

  • Putri GE, Rilda Y, Syukri S, Labanni A, Arief S (2021) Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J Market Res 15:2355–2364

    Google Scholar 

  • Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–228

    CAS  PubMed  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1):323–328

    CAS  PubMed  Google Scholar 

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking: analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4):910–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956

    CAS  Google Scholar 

  • Radhakrishnan R, Khan FLA, Muthu A, Manokaran A, Savarenathan JS, Kasinathan K (2021) Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Lett Appl Nanobiosci 10:2706–2714

    Google Scholar 

  • Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7(1):42–46

    Google Scholar 

  • Rafique M, Tahir R, Gillani SSA, Tahir MB, Shakil M, Iqbal T, Abdellahi MO (2022) Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium Cumini for seed germination and wastewater purification. Int J Environ Anal Chem 102(1):23–38

    CAS  Google Scholar 

  • Rahman TU, Khan H, Liaqat W, Zeb MA (2022) Phytochemical screening, green synthesis of gold nanoparticles, and antibacterial activity using seeds extract of Ricinus communis L. Microsc Res Tech 85(1):202–208

    CAS  PubMed  Google Scholar 

  • Rahman RA, Hua CC, Masdor NA (2023) Green synthesis and characterization of zinc oxide nanoparticles using Aloe vera leaf extract. In: AIP conference proceedings. AIP Publishing, College Park

  • Rahmatullah M, Sultan S, Toma T, Lucky S, Chowdhury M, Haque W, Annay E, Jahan R (2010) Effect of Cuscuta reflexa stem and Calotropis procera leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice. Afr J Trad Compl Alt Med. https://doi.org/10.4314/ajtcam.v7i2.50864

    Article  Google Scholar 

  • Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ (2012) Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117

    CAS  Google Scholar 

  • Rajan AR, Rajan A, John A, Philip D (2019) Green synthesis of CeO2 nanostructures by using Morus nigra fruit extract and its antidiabetic activity. In: AIP conference proceedings, vol. 2105, No. 1. AIP Publishing LLC, College Park, p 020008

  • Rajendran A, Siva E, Dhanraj C, Senthilkumar S (2018) A green and facile approach for the synthesis copper oxide nanoparticles using Hibiscus rosa-sinensis flower extracts and it’s antibacterial activities. J Bioprocess Biotech 8(3):324

    Google Scholar 

  • Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK (2019) Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol, B 193:1–7

    CAS  PubMed  Google Scholar 

  • Rakib-Uz-Zaman SM, Hoque Apu E, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, Akter N, Khan MAR, Shuborna NS, Shams SM, Khan K (2022) Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges 13(1):18

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57

    CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Google Scholar 

  • Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater 402:123560

    CAS  PubMed  Google Scholar 

  • Rao ML, Savithramma N (2011) Biological synthesis of silver nanoparticles using Svensonia Hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res 3(3):1117

    Google Scholar 

  • Rasheed T, Bilal M, Iqbal HM, Li C (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B 158:408–415

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    PubMed  PubMed Central  ADS  Google Scholar 

  • Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58

    Google Scholar 

  • Renuga D, Jeyasundari J, Athithan AS, Jacob YBA (2020) Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater Res Express 7(4):045007

    CAS  ADS  Google Scholar 

  • Riaz S, Fatima Rana N, Hussain I, Tanweer T, Nawaz A, Menaa F, Janjua HA, Alam T, Batool A, Naeem A, Hameed M (2020) Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials 10(9):1769. https://doi.org/10.3390/nano10091769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61(47):11278–11285

    CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558

    CAS  Google Scholar 

  • Saif S, Tahir A, Asim T, Chen Y (2016) Plant mediated green synthesis of CuO nanoparticles: comparison of toxicity of engineered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials 6(11):205

    PubMed  PubMed Central  Google Scholar 

  • Sakpirom J, Kantachote D, Siripattanakul-Ratpukdi S, McEvoy J, Khan E (2019) Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. Chemosphere 223:455–464

    CAS  PubMed  ADS  Google Scholar 

  • Sakulkhu U, Mahmoudi M, Maurizi L, Coullerez G, Hofmann-Amtenbrink M, Vries M, Motazacker M, Rezaee F, Hofmann H (2015) Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 3(2):265–278

    CAS  PubMed  Google Scholar 

  • Salama HM (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197

    Google Scholar 

  • Salopek B, Krasic D, Filipovic S (1992) Measurement and application of zeta-potential. Rudarsko-Geolosko-Naftni Zbornik 4(1):147

    Google Scholar 

  • Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2015) Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5(6):731–736

    CAS  ADS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    PubMed  Google Scholar 

  • Sarfraz N, Khan I (2021) Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications. Chem Asian J 16(7):720–742

    CAS  PubMed  Google Scholar 

  • Scherbaum FJ, Knopp R, Kim JI (1996) Counting of particles in aqueous solutions by laser-induced photoacoustic breakdown detection. Appl Phys B 63(3):299–306

    CAS  ADS  Google Scholar 

  • Scherrer P (1916) Die Rotationsdispersion des Wasserstoffs. (Ein Beitrag zur Kenntnis der Konstitution des Wasserstoffmoleküls). Physikalische Zeitschrift 17:18–21

    CAS  Google Scholar 

  • Schimpf ME, Caldwell K, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley, Hoboken

    Google Scholar 

  • Schuck P, Zhao H, Brautigam CA, Ghirlando R (2016) Basic principles of analytical ultracentrifugation, vol 2015. CRC Press, Boca Raton

    Google Scholar 

  • Sebastiammal S, Mariappan A, Neyvasagam K, Fathima AL (2019) Annona muricatainspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Mater Today Proc 9:627–632

    CAS  Google Scholar 

  • Seif S, Sorooshzadeh A, Rezazadeh HS, Naghdibadi HA (2011) Effect of nano silver and silver nitrate on seed yield of borage. J Med Plants Res 5(5):706–710

    CAS  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020) Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth 9(1):171–181

    Google Scholar 

  • Shah IH, Ashraf M, Sabir IA, Manzoor MA, Malik MS, Gulzar S, Ashraf F, Iqbal J, Niu Q, Zhang Y (2022) Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J Mol Struct 1259:132696

    CAS  Google Scholar 

  • Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MRH, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(4):913

    Google Scholar 

  • Shammout M, Awwad A (2021) A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem Int 7(1):71–78

    CAS  Google Scholar 

  • Sharma SC (2016) ZnO nano-flowers from Carica papaya milk: degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik 127(16):6498–6512

    CAS  ADS  Google Scholar 

  • Sharma S, Kumar K (2021) Aloe-vera leaf extract as a green agent for the synthesis of CuO nanoparticles inactivating bacterial pathogens and dye. J Dispersion Sci Technol 42(13):1950–1962. https://doi.org/10.1080/01932691.2020.1791719

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233

    CAS  PubMed  Google Scholar 

  • Sharma SK, Khan AU, Khan M, Gupta M, Gehlot A, Park S, Alam M (2020) Biosynthesis of MgO nanoparticles using Annona squamosa seeds and its catalytic activity and antibacterial screening. Micro Nano Lett 15(1):30–34. https://doi.org/10.1049/mnl.2019.0358

    Article  CAS  Google Scholar 

  • Sheikhalipour S, Esmaielpour B, Behnamian M, Ghohari TGM, Vachora P, Rastogi A, Brestic M, Skaliy M (2021) Chitosan-Selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021(11):684

    Google Scholar 

  • Shekhar S, Singh S, Gandhi N, Gautam S, Sharma B (2023) Green chemistry based benign approach for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta indica. Clean Eng Technol 13:100607. https://doi.org/10.1016/j.clet.2023.100607

    Article  Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609

    CAS  PubMed  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112–113. https://doi.org/10.15835/nsb224667

    Article  Google Scholar 

  • Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, Hurter PN, Reynolds SD, Kaufman MJ (2003) Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 20(3):479–484

    CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:1–10. https://doi.org/10.1186/s11671-016-1607-2

    Article  CAS  ADS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437. https://doi.org/10.1002/etc.2697

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. Nanotechnol Plat Sci. https://doi.org/10.1007/978-3-319-14502-0_2

    Article  Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Singh A, Joshi NC, Ramola M (2019) Magnesium oxide nanoparticles (MgONps): green synthesis, characterizations and antimicrobial activity. Res JPharm Technol 12(10):4644–4646. https://doi.org/10.5958/0974-360X.2019.00799.6

    Article  Google Scholar 

  • Singh A, Singh S, Arora M (2022) Green chemistry based for the synthesis of titanium oxide nanoparticles using extracts of Azadirachta indica. Int J Innov Sci Res Technol 7:1–5

    Google Scholar 

  • Sivaranjani V, Philominathan PJWM (2016) Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med 12:1–5. https://doi.org/10.1016/j.wndm.2015.11.002

    Article  Google Scholar 

  • Skomski R (2003) Nanomagnetics. J Phys Condens Matter 15(20):R841

    CAS  ADS  Google Scholar 

  • Sompornpailin K, Chayaprasert W (2020) Plant physiological impacts and flavonoid metabolic responses to uptake TiO2 nanoparticles. Aust J Crop Sci 14(4):581587. https://doi.org/10.3316/INFORMIT.261774631832904

    Article  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  • Sougandhi PR, Reddeppa M, Harini SS, Tenkayala DSR, Gangadhara R (2018) Green synthesis and characterization of silver nano particles by using Psidium guajava leaf extract. J Drug Delivery Ther 8(5s):301–305

    CAS  Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    CAS  PubMed  ADS  Google Scholar 

  • Sunny NE, Mathew SS, Kumar SV, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y (2022) Effect of green synthesized nano-titanium synthesized from Trachyspermum ammi extract on seed germination of Vigna radiate. Chemosphere 300:134600

    CAS  PubMed  ADS  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562. https://doi.org/10.1007/s00436-015-4339-9

    Article  PubMed  Google Scholar 

  • Suriyakala G, Sathiyaraj S, Babujanarthanam R, Alarjani KM, Hussein DS, Rasheed RA, Kanimozhi K (2022) Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. J King Saud Univ Sci 34(3):101830

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8(6):902–908. https://doi.org/10.2174/157341312803989033

    Article  CAS  ADS  Google Scholar 

  • Suzuki E (2002) High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J Microsc 208(3):153–157

    MathSciNet  CAS  PubMed  Google Scholar 

  • Tanweer T, Rana NF, Saleem I, Shafique I, Alshahrani SM, Almukhlifi HA, Alotaibi AS, Alshareef SA, Menaa F (2022) Dental composites with magnesium doped zinc oxide nanoparticles prevent secondary caries in the alloxan-induced diabetic model. Int J Mol Sci 23(24):15926. https://doi.org/10.3390/ijms232415926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9(1):1–8

    Google Scholar 

  • Taylor RA, Otanicar TP, Herukerrupu Y, Bremond F, Rosengarten G, Hawkes ER, Jiang X, Coulombe S (2013) Feasibility of nanofluid-based optical filters. Appl Opt 52(7):1413–1422. https://doi.org/10.1364/AO.52.001413

    Article  PubMed  ADS  Google Scholar 

  • Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M (2015) Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloy Compd 647:392–396. https://doi.org/10.1016/j.jallcom.2015.06.076

    Article  CAS  Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821

    CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Studies 7:87–96

    Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591. https://doi.org/10.1007/s13204-013-0236-7

    Article  CAS  ADS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180

    CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300. https://doi.org/10.1038/nnano.2007.108

    Article  CAS  PubMed  ADS  Google Scholar 

  • Torres R, Diz VE, Lagorio MG (2018) Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts. Photochem Photobiol Sci 17(4):505–516

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  • Turakhia B, Turakhia P, Shah S (2018) Green synthesis of zero valent iron nanoparticles from Spinacia oleracea (spinach) and its application in waste water treatment. J Adv Res Appl Sci 5(1):46–51

    Google Scholar 

  • Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G, Fatima Rana N, Menaa F (2020) Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine. Bioengineering 7(4):129. https://doi.org/10.3390/bioengineering7040129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79

    CAS  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111(6):2329–2337

    PubMed  Google Scholar 

  • Vesali-Kermani E, Habibi-Yangjeh A, Ghosh S (2020) Efficiently enhanced nitrogen fixation performance of g-C3N4 nanosheets by decorating Ni3V2O8 nanoparticles under visible-light irradiation. Ceram Int 46(15):24472–24482. https://doi.org/10.1016/j.ceramint.2020.06.232

    Article  CAS  Google Scholar 

  • Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65(3):992–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijikumar S, Ramanathan K, Devi BP (2011) Cuscuta reflexa Roxb—a wonderful miracle plant in ethnomedicine. Indian J Nat Sci Int Bimon 976:997

    Google Scholar 

  • Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8(15):2328–2334

    CAS  PubMed  Google Scholar 

  • Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Parađiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18. https://doi.org/10.1016/j.envres.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  • Wagner M (2009) Thermal analysis in practice: application handbook. Mettler-Toledo, Mumbai

    Google Scholar 

  • Wang G, Shi C, Zhao N, Du X (2007) Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater Lett 61(18):3795–3797

    CAS  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):1–10. https://doi.org/10.1007/s11051-012-0841-5

    Article  CAS  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012a) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4(10):1105–1112

    CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712. https://doi.org/10.1016/j.tplants.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wijesinghe U, Thiripuranathar G, Iqbal H, Menaa F (2021a) Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability 13(4):2004. https://doi.org/10.3390/su13042004

    Article  CAS  Google Scholar 

  • Wijesinghe U, Thiripuranathar G, Menaa F, Iqbal H, Razzaq A, Almukhlifi H (2021b) Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum. Catalysts 11(7):831. https://doi.org/10.3390/catal11070831

    Article  CAS  Google Scholar 

  • Xie Y, Li B, Tao G, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing for Univ (nat Sci Ed) 36(2):59–63

    CAS  Google Scholar 

  • Xu J, Luo X, Wang Y, Feng Y (2018) Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environ Sci Pollut Res 25(6):6026–6035. https://doi.org/10.1007/s11356-017-0953-7

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190. https://doi.org/10.1385/BTER:110:2:179

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Cota-Ruiz K, Hernandez-Viezcas JA, Valdes C, Medina-Velo IA, Turley RS, Peralta-Videa JR, Gardea-Torresdey JL (2020) Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain Chem Eng 8(3):1427–1436. https://doi.org/10.1021/acssuschemeng.9b05615

    Article  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE. https://doi.org/10.1371/journal.pone.0047674

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    CAS  PubMed  Google Scholar 

  • Yu J, Wang D, Geetha N, Khawar KM, Jogaiah S, Mujtaba M (2021) Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review. Carbohyd Polym 261:117904. https://doi.org/10.1016/j.carbpol.2021.117904

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(3):180–190

    CAS  Google Scholar 

  • Zafar N, Uzair B, Niazi MBK, Menaa F, Samin G, Khan BA, Iqbal H, Menaa B (2021) Green synthesis of ciprofloxacin-loaded cerium oxide/chitosan nanocarrier and its activity against MRSA-induced mastitis. J Pharm Sci 110(10):3471–3483. https://doi.org/10.1016/j.xphs.2021.06.017

    Article  CAS  PubMed  Google Scholar 

  • Zafar N, Uzair B, Menaa F, Khan BA, Niazi MBK, Alaryani FS, Majrashi KA, Sajjad S (2022) Moringa concanensis-mediated synthesis and characterizations of ciprofloxacin encapsulated into Ag/TiO2/Fe2O3/CS nanocomposite: a therapeutic solution against multidrug resistant E. coli strains of livestock infectious diseases. Pharmaceutics 14(8):1719. https://doi.org/10.3390/pharmaceutics14081719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahra Z, Ali MA, Parveen A, Kim E, Khokhar MF, Baig S, Hina K, Choi HK, Arshad M (2019) Exposure–response of wheat cultivars to TiO2 nanoparticles in contrasted soils. Soil Sedim Contam Int J 28(2):184–199. https://doi.org/10.1080/15320383.2018.1561650

    Article  CAS  Google Scholar 

  • Zak AK, Abrishami ME, Majid WA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37(1):393–398. https://doi.org/10.1016/j.ceramint.2010.08.017

    Article  CAS  Google Scholar 

  • Zangeneh MM, Zangeneh A (2020) Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl Organomet Chem 34(1):e5271. https://doi.org/10.1002/aoc.5271

    Article  MathSciNet  CAS  Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8):6667–6676. https://doi.org/10.3390/molecules16086667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarinkoob A, Esmaeilzadeh Bahabadi S, Rahdar A, Hasanein P, Sharifan H (2021) Ce-Mn ferrite nanocomposite promoted the photosynthesis, fortification of total yield, and elongation of wheat (Triticum aestivum L.). Environ Monit Assess 193:1–12. https://doi.org/10.1007/s10661-021-09506-z

    Article  CAS  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141. https://doi.org/10.1007/s12011-010-8901-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang BT, Teng Y, Zhao J, Kuang L, Sun X (2020) Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. J Hazard Mater 400:123290. https://doi.org/10.1016/j.jhazmat.2020.123290

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951. https://doi.org/10.1021/jf404328e

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759. https://doi.org/10.1021/jf405476u

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    CAS  PubMed  Google Scholar 

  • Zhu W, Hu C, Ren Y, Lu Y, Song Y, Ji Y, Han C, He J (2021) Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity. J Environ Chem Eng 9(6):106659. https://doi.org/10.1016/j.jece.2021.106659

    Article  CAS  Google Scholar 

  • Zidane Y, Laouini SE, Bouafia A, Meneceur S, Tedjani ML, Alshareef SA, Almukhlifi HA, Al-Essa K, Al-Essa EM, Rahman MM, Madkhali O (2022) Green synthesis of multifunctional MgO@ AgO/Ag2O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front Chem 10:1083596. https://doi.org/10.3389/fchem.2022.1083596

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

Mohammad Shiraz acknowledges the receipt of CSIR-JRF Fellowship (ID: 191620066954) funded by University Grants Commission (UGC), New Delhi, India.

Funding

Funding was provided by University Grants Commission (Grant No. 91620066954).

Author information

Authors and Affiliations

Authors

Contributions

SH, AA: idea of the article; MS, HI: drafting of the article; MS, AA: edited the final version of the manuscript and figures.

Corresponding author

Correspondence to Shamsul Hayat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiraz, M., Imtiaz, H., Azam, A. et al. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 37, 23–70 (2024). https://doi.org/10.1007/s10534-023-00542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-023-00542-5

Keywords

Navigation