Skip to main content
Log in

Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Bacillus flexus strain SSAI1 isolated from agro-industry waste, Tuem, Goa, India displayed high arsenite resistance as minimal inhibitory concentration was 25 mM in mineral salts medium. This bacterial strain exposed to 10 mM arsenite demonstrated rapid arsenite oxidation and internalization of 7 mM arsenate within 24 h. The Fourier transformed infrared (FTIR) spectroscopy of cells exposed to arsenite revealed important functional groups on the cell surface interacting with arsenite. Furthermore, scanning electron microscopy combined with electron dispersive X-ray spectroscopy (SEM-EDAX) of cells exposed to arsenite revealed clumping of cells with no surface adsorption of arsenite. Transmission electron microscopy coupled with electron dispersive X-ray spectroscopic (TEM-EDAX) analysis of arsenite exposed cells clearly demonstrated ultra-structural changes and intracellular accumulation of arsenic. Whole-genome sequence analysis of this bacterial strain interestingly revealed the presence of large number of metal(loid) resistance genes, including aioAB genes encoding arsenite oxidase responsible for the oxidation of highly toxic arsenite to less toxic arsenate. Enzyme assay further confirmed that arsenite oxidase is a periplasmic enzyme. The genome of strain SSAI1 also carried glpF, aioS and aioE genes conferring resistance to arsenite. Therefore, multi-metal(loid) resistant arsenite oxidizing Bacillus flexus strain SSAI1 has potential to bioremediate arsenite contaminated environmental sites and is the first report of its kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar NC, Faria MC, Pedron T, Batista BL, Mesquita JP, Bomfeti CA, Rodrigues JL (2020) Isolation and characterization of bacteria from a brazilian gold mining area with a capacity of arsenic bioaccumulation. Chemosphere 240:124871

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    Article  CAS  PubMed  Google Scholar 

  • Arsène-Ploetze F, Koechler S, Marchal M, Coppée JY, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, Bruneel O (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6(2):e1000859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K (2020) Characterisation of hyper tolerant Bacillus firmus L- 148 for arsenic oxidation. Environ Pollut 261: 114124.

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23(6):803–812

    Article  CAS  PubMed  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. J Hazard Mater 262:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health Part A 46(14):1736–1747

    Article  CAS  Google Scholar 

  • Bermanec V, Paradžik T, Kazazić SP, Venter C, Hrenović J, Vujaklija D, Duran R, Boev I, Boev B (2020) Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. J Hazard Mater 402:123437

    Article  PubMed  CAS  Google Scholar 

  • Branco R, Francisco R, Chung AP, Morais PV (2009) Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Appl Environ Microbiol 75(15):5141–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno BYM, Torem ML, Molina FALMS, De Mesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21(1):65–75

    Article  CAS  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009a) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai L, Rensing C, Li X, Wang G (2009b) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83(4):715–725

    Article  CAS  PubMed  Google Scholar 

  • Chang JS (2015) Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: arsenic contamination in Cambodia. Environ Pollut 206:315–323

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Goswami R, Mukherjee S, Rana VS, Saha DR, Raman R, Padhy PK, Mazumder S (2015) Isolation and characterization of arsenic-resistant bacteria from contaminated water-bodies in West Bengal, India. Geomicrobiol J 32(1):17–26

    Article  CAS  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Liu Z, Ding S, Hao C, Xiu W, Hou W (2015) Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environ Pollut 203:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Jha S, Adhikary H, Kumar P, Parekh V, Jha A, Mahatma MK, Kumar GN (2014) Isolation and molecular characterization of arsenite-tolerant Alishewanella sp. GIDC-5 originated from industrial effluents. Geomicrobiol J 31(1):82–90

    Article  CAS  Google Scholar 

  • Jebeli MA, Maleki A, Amoozegar MA, Kalantar E, Izanloo H, Gharibi F (2017) Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources. Chemosphere 169:636–641

    Article  CAS  PubMed  Google Scholar 

  • Jebelli MA, Maleki A, Amoozegar MA, Kalantar E, Gharibi F, Darvish N, Tashayoe H (2018) Isolation and identification of the native population bacteria for bioremediation of high levels of arsenic from water resources. J Environ Manage 212:39–45

    Article  CAS  PubMed  Google Scholar 

  • Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ (2019) Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: characterization and genome analysis. Chemosphere 218:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Bothner B, Rensing C, McDermott TR (2012) Involvement of RpoN in regulating bacterial arsenite oxidation. Appl Environ Microbiol 78(16):5638–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188(3):1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926

    Article  PubMed  PubMed Central  Google Scholar 

  • Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN (2010) Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 10(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koechler S, Arsène-Ploetze F, Brochier-Armanet C, Goulhen-Chollet F, Heinrich-Salmeron A, Jost B, Lièvremont D, Philipps M, Plewniak F, Bertin PN, Lett MC (2015) Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Res Microbiol 166(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lett M, Paknikar K, Lievremont D (2001) A simple and rapid method for arsenite and arsenate speciation. Process Metall 11:541–546

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  • Mahtani S, Mavinkurve S (1979) Microbial purification of longifolene: a sesquiterpene. J Ferment Technol 57:529–533

    CAS  Google Scholar 

  • Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 463:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Mallick I, Hossain ST, Sinha S, Mukherjee SK (2014) Brevibacillussp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicol Environ Saf 107:236–244

    Article  CAS  PubMed  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  PubMed  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279(18):18334–18341

    Article  CAS  PubMed  Google Scholar 

  • Mujawar SY, Shamim K, Vaigankar DC, Dubey SK (2019) Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 32(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Médigue C, Koechler S, Barbe V, Barakat M, Talla E, Bonnefoy V, Krin E, Arsene-Ploetze F, Carapito C, Chandler M (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3(4):e53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naumann D, Helm D, Labischinski H, Giesbrecht P (1991) The characterization of microorganisms by Fourier-transform infrared spectroscopy. In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH, New York, pp 43–96

    Google Scholar 

  • Oust A, Møretrø T, Kirschner C, Narvhus JA, Kohler A (2004) FT-IR spectroscopy for identification of closely related Lactobacilli. J Microbiol Methods 59(2):49–162

    Article  CAS  Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130

    Article  PubMed  CAS  Google Scholar 

  • Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza MG, Tamay-Cach F, Valenzuela-Limón OL, García-Montalvo EA, Hernández-Zavala A (2020) Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol 110:104539

    Article  CAS  PubMed  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164(4):420–428

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200

    Article  CAS  PubMed  Google Scholar 

  • Rathod J, Dhanani AS, Jean JS, Jiang WT (2019) The whole genome insight on condition-specific redox activity and arsenopyrite interaction promoting As-mobilization by strain Lysinibacillus sp. B2A1. J Hazard Mater 364:671–681

    Article  CAS  PubMed  Google Scholar 

  • Rehman A, Butt SA, Hasnain S (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 9(10):1493–1498

    Article  CAS  Google Scholar 

  • Santini JM, van den Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiwal S, Santini JM, Osborne TH, Djordjevic S (2010) Characterization of a two-component signal transduction system that controls arsenite oxidation in the chemolithoautotroph NT-26. FEMS Microbiol Lett 313(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Satyapal GK, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8(3):256–258

    Article  CAS  Google Scholar 

  • Saunders JK, Rocap G (2016) Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. ISME J 10(1):197–209

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Gupta S, Marwa N, Pandey V, Verma PC, Rathaur S, Singh N (2016) Arsenic mediated modifications in Bacillus aryabhattai and their biotechnological applications for arsenic bioremediation. Chemosphere 164:524–534

    Article  CAS  PubMed  Google Scholar 

  • Sodhi KK, Kumar M, Agrawal PK, Singh DK (2019) Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ Technol Innov 16:100462

    Article  Google Scholar 

  • Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172:85–90

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Rosen BP (2013) Arsenic methyltransferases. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 140–145

    Google Scholar 

  • van den Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. strain NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta Bioenergetics 1656(2–3):148–155

    Article  CAS  Google Scholar 

  • Wang Q, Han Y, Shi K, Fan X, Wang L, Li M, Wang G (2017) An oxidoreductase AioE is responsible for bacterial arsenite oxidation and resistance. Sci Rep 7(1):1–10

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Feng S, Li B, Mi X (2010) The characteristics of Escherichia coli adsorption of arsenic(III) from aqueous solution. World J Microbiol Biotechnol 26(2):249–256

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Sajiya Yusuf Mujawar is grateful to University Grants Commission, New Delhi for financial support as MANF-SRF (Award Letter No. F1-17.1/2015-16/MANF-2015-17-Goa-50641). The authors are thankful to Mr. Areef Sardar from CSIR-National Institute of Oceanography, Goa for EDAX analysis and AIRF, Jawaharlal Nehru University, New Delhi for TEM-EDAX analysis. The authors are also obliged to Dr. B. R. Srinivasan and Mr. Rahul Kerkar from Department of Chemistry, Goa University for FTIR analysis. The authors are also grateful to Dr. Sandeep Garg, Head, Department of Microbiology, Goa University for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

SYM: Conceptualization, experiments, data generation, analysis and writing of the original draft manuscript. DCV: Assisted in experimental work and draft writing. SKD: Experimental designs, verification of data, mentoring of experiments, correction and final editing of the research manuscript.

Corresponding author

Correspondence to Santosh Kumar Dubey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7323 KB)

Supplementary file2 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mujawar, S.Y., Vaigankar, D.C. & Dubey, S.K. Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes. Biometals 34, 895–907 (2021). https://doi.org/10.1007/s10534-021-00316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-021-00316-x

Keywords

Navigation