Skip to main content
Log in

Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cost-effective “green” methods of producing Ag nanoparticles (NPs) are being examined because of the potential of these NPs as antimicrobials. Ag NPs were generated from Ag ions using extracellular metabolites from a soil-borne Pythium species. The NPs were variable in size, but had one dimension less than 50 nm and were biocoated; aggregation and coating changed with acetone precipitation. They had dose-dependent lethal effects on a soil pseudomonad, Pseudomonas chlororaphis O6, and were about 30-fold more effective than Ag+ ions. A role of reactive oxygen species in cell death was demonstrated by use of fluorescent dyes responsive to superoxide anion and peroxide accumulation. Also mutants of the pseudomonad, defective in enzymes that protect against oxidative stress, were more sensitive than the wild type strain; mutant sensitivity differed between exposure to Ag NPs and Ag+ ions demonstrating a nano-effect. Imaging of bacterial cells treated with the biocoated Ag NPs revealed no cell lysis, but there were changes in surface properties and cell height. These findings support that biocoating the NPs results in limited Ag release and yet they retained potent antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brown SM, Howell ML, Vasil ML, Anderson AJ, Hassett DJ (1995) Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. J Bacteriol 177(22):6536–6544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnson W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222

    Article  CAS  PubMed  Google Scholar 

  • Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7(24):3479–3486. doi:10.1002/smll.201101511

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levesque CA, Tisserat N, Buell CR (2008) Analysis of the Pythium ultimum transcriptone using Sanger and pyrosequencing approaches. BMC Genom 9:542. doi:10.1186/1471-2164-9-542

    Article  Google Scholar 

  • Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1(4):1852–1858. doi:10.1038/nprot.2006.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61(5):1308–1321

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011) Interaction of silver nanoparticles with an environmentally beneficial bacterium Pseudomonas chlororaphis. J Hazard Mater 188(1–3):428–435. doi:10.1016/j.jhazmat.2011.01.118

    Article  CAS  PubMed  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anall Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, Ye JD, Pati M, Vercruysse M, Ralifo PS, Allison KR, Khalil AS, Ting AY, Walker GC, Collins JJ (2014) Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci USA 111(20):2100–2109. doi:10.1073/pnas.1401876111

    Article  Google Scholar 

  • Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol 65(10):450

    Google Scholar 

  • Esterhazy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH: ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964–3971

    Article  CAS  PubMed  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290.

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386. doi:10.1016/j.nano.2009.06.005

    CAS  PubMed  Google Scholar 

  • Guo DJ, Li HL (2005) Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43:1259–1264

    Article  CAS  Google Scholar 

  • Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34(5):1082–1093

    Article  CAS  PubMed  Google Scholar 

  • Heo YJ, Chung IY, Cho WJ, Lee BY, Kim JH, Choi KH, Lee JW, Hassett DJ, Cho YH (2010) The major catalase gene (katA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J Bacteriol 192(2):381–390. doi:10.1128/JB.00980-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Housley L, Anderson T, Sontag N, Han SH, Britt DW, Anderson AJ (2009) Pluronics’ influence on pseudomonad biofilm and phenazine production. EMS Microbiol Lett 293(1):148–153. doi:10.1111/j.1574-6968.2009.01528

    Article  CAS  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621

    Article  CAS  PubMed  Google Scholar 

  • Kang BR, Cho BH, Anderson AJ, Kim YC (2004) The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137–143

    Article  CAS  PubMed  Google Scholar 

  • Katsuwon J, Anderson AJ (1990) Catalase and superoxide dismutase of root-colonizing saprophytic fluorescent pseudomonads. Appl Environ Microbiol 56:3576–3582

  • Kim YC, Miller CD, Anderson AJ (2000) Superoxide dismutase activity in Pseudomonas putida affects utilization of sugars and growth on root surfaces. Appl Environ Microbiol 66:1480–1487

  • Kim CH, Kim YH, Anderson AJ, Kim YC (2014) Proteomic analysis of a global Regulator GacS sensor kinase in the rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol J 30(2):220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland RA, Franklin JL (2001) Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21(6):1949–1963

    CAS  PubMed  Google Scholar 

  • Kumar KR, Nattuthurai N, Gopinath P, Mariappan T (2014) Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol Res 114:411–417

    Article  PubMed  Google Scholar 

  • Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver; Bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98(6):1054–1060

    Article  PubMed  Google Scholar 

  • Lee W, Kim KJ, Lee DG (2014) A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Macdonald IA, Kuehn MJ (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 195(13):2971–2981. doi:10.1128/JB.02267-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau N, McLean JE, Dimkpa CO, Britt DW, Anderson AJ (2014) Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environ Pollut 187:65–72

    Article  CAS  PubMed  Google Scholar 

  • McQuillan JS, Shaw AM (2014) Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 8(Suppl 1):177–184. doi:10.3109/17435390.2013.870243

    Article  CAS  PubMed  Google Scholar 

  • McQuillan JS, Infante HG, Stokes E, Shaw AM (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857–866. doi:10.3109/17435390.2011.626532

    Article  CAS  PubMed  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755. doi:10.1063/1.1462610

    Article  CAS  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786. doi:10.1038/NNANO.2012.207

    Article  CAS  PubMed  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ (2000) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: oxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182:4533–4544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Kim JS, Park JY, Han SH, Dimkpa C, Anderson AJ, Kim YC (2013) The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol J 29(3):323–329. doi:10.5423/PPJ.NT.01.2013.0013

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4):1027–1032. doi:10.1016/j.watres.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  • Shemetov AA, Nabiev I, Sukhanova A (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6(6):4585–4602. doi:10.1021/nn300415x

    Article  CAS  PubMed  Google Scholar 

  • Spencer M, Ryu C-M, Yang K-W, Kim YC, Kloepper JW, Anderson AJ (2003) Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at the ethylene pathway. Physiol Mol Plant Pathol 63:27–34

    Article  CAS  Google Scholar 

  • Wolk CP (1991) Genetic analysis of cyanobacterial development. Curr Opin Genet Dev 1:336–341

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi:10.1021/nl301934w

    Article  CAS  PubMed  Google Scholar 

  • Xu FF, Imlay JA (2012) Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol 78(10):3614–3621. doi:10.1128/AEM.07368-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305–1314

  • Zhang Z, Chen X, Yang H, Fu H, Xiao F (2009) Electrically conductive adhesives with sintered silver nanowires. (2009) international conference on electronic packaging technology & high density packaging (ICEPT-HDP) pp 834–837

Download references

Acknowledgments

This work was supported by Grant from the USDA (#10867118), the Utah Agricultural Experiment Station to AJA and the Water Research Laboratory to JM. The catalase and SOD mutants were generated under support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011555).This is Utah Agricultural Research Paper number: 8740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Anderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Supplementary material 2 (PPT 2304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gade, A., Adams, J., Britt, D.W. et al. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis. Biometals 29, 211–223 (2016). https://doi.org/10.1007/s10534-015-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9906-0

Keywords

Navigation