Skip to main content
Log in

The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress

  • Published:
BioMetals Aims and scope Submit manuscript

An Erratum to this article was published on 15 January 2015

Abstract

A detailed characterization of membrane lipids of the photosynthetic bacterium Rhodobacter (R.) sphaeroides was accomplished by thin-layer chromatography coupled with matrix-assisted laser desorption ionization mass spectrometry. Such an approach allowed the identification of the main membrane lipids belonging to different classes, namely cardiolipins (CLs), phosphatidylethanolamines, phosphatidylglycerols (PGs), phosphatidylcholines, and sulfoquinovosyldiacylglycerols (SQDGs). Thus, the lipidomic profile of R. sphaeroides R26 grown in abiotic stressed conditions by exposure to bivalent cobalt cation and chromate oxyanion, was investigated. Compared to bacteria grown under control conditions, significant lipid alterations take place under both stress conditions; cobalt exposure stress results in the relative content increase of CLs and SQDGs, most likely compensating the decrease in PGs content, whereas chromate stress conditions result in the relative content decrease of both PGs and SQDGs, leaving CLs unaltered. For the first time, the response of R. sphaeroides to heavy metals as Co2+ and CrO4 2− is reported and changes in membrane lipid profiles were rationalised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188(9):3371–3381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24(4):687–707. doi:10.1007/s10534-011-9421-x

    Article  CAS  PubMed  Google Scholar 

  • Albering H, van Leusen S, Moonen E, Hoogewerff J, Kleinjans J (1999) Human health risk assessment: a case study involving heavy metal soil contamination after the flooding of the river meuse during the winter of 1993-1994. Environ Health Perspect 107(1):37–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asztalos E, Italiano F, Milano F, Maroti P, Trotta M (2010) Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria. Photochem Photobiol Sci 9(9):1218–1223. doi:10.1039/c0pp00040j

    Article  CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Yang GE, Li BZ (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol 99(16):7716–7722

    Article  CAS  PubMed  Google Scholar 

  • Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 67(10):4440–4447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belviso B, Italiano F, Caliandro R, Carrozzini B, Costanza A, Trotta M (2013) Cobalt binding in the photosynthetic bacterium R. sphaeroides by X-ray absorption spectroscopy. Biometals 26(5):693–703. doi:10.1007/s10534-013-9641-3

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90(4):1561–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Buccolieri A, Italiano F, Dell’Atti A, Buccolieri G, Giotta L, Agostiano A, Milano F, Trotta M (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96(3–4):195–203

    Article  CAS  PubMed  Google Scholar 

  • Calvano CD, Zambonin CG, Palmisano F (2011) Lipid fingerprinting of Gram-positive lactobacilli by intact cells-matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge based matrix. Rapid Commun Mass Spectrom 25(12):1757–1764. doi:10.1002/Rcm.5035

    Article  CAS  PubMed  Google Scholar 

  • Calvano CD, Monopoli A, Ditaranto N, Palmisano F (2013) 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: a new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry. Anal Chim Acta 798:56–63. doi:10.1016/j.aca.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  • Catucci L, Depalo N, Lattanzio VM, Agostiano A, Corcelli A (2004) Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43(47):15066–15072. doi:10.1021/bi048802k

    Article  CAS  PubMed  Google Scholar 

  • Cedergren RA, Hollingsworth RI (1994) Occurrence of sulfoquinovosyl diacylglycerol in some members of the family Rhizobiaceae. J Lipid Res 35(8):1452–1461

    CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Cox JC, Madigan MT, Favinger JL, Gest H (1980) Redox mechanisms in “oxidant-dependent” hexose fermentation by Rhodopseudomonas capsulata. Arch Biochem Biophys 204(1):10–17. doi:http://www.ncbi.nlm.nih.gov/pubmed/7000002

    Article  CAS  PubMed  Google Scholar 

  • D’Amici GM, Rinalducci S, Murgiano L, Italiano F, Zolla L (2010) Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J Proteome Res 9(1):192–203

    Article  PubMed  Google Scholar 

  • De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A (2009) Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res 50(2):256–264. doi:10.1194/jlr.M800312-JLR200

    Article  PubMed  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171. doi:10.1002/mas.10004

    Article  CAS  PubMed  Google Scholar 

  • Gellermann GP, Appel TR, Davies P, Diekmann S (2006) Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol Chem 387(9):1267–1274. doi:10.1515/BC.2006.157

    Article  CAS  PubMed  Google Scholar 

  • Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62(9):1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Giotta L, Italiano F, Pisani F, Ceci LLR, De Leo F (2007) Cobalt effect on the bacteriochlorophyll biosynthesis pathway and magnesium metabolism in Rhodobacter sphaeroides strain R26.1. Photosynth Res 91(2–3):302–303

    Google Scholar 

  • Giotta L, Italiano F, Buccolieri A, Agostiano A, Milano F, Trotta M (2008) Magnesium chemical rescue to cobalt-poisoned cells from Rhodobacter sphaeroides. In: Allen J, Gantt E, Golbeck J, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer, Netherlands, pp 1455–1458. doi:10.1007/978-1-4020-6709-9_313

    Chapter  Google Scholar 

  • Giotta L, Mastrogiacomo D, Italiano F, Milano F, Agostiano A, Nagy K, Valli L, Trotta M (2011) Reversible binding of metal ions onto bacterial layers revealed by protonation-induced ATR-FTIR difference spectroscopy. Langmuir 27(7):3762–3773. doi:10.1021/la104868m

    Article  CAS  PubMed  Google Scholar 

  • Italiano F, Pisani F, Leo F, Ceci L, Gallerani R, Zolla L, Rinalducci S, Giotta L, Milano F, Agostiano A, Trotta M (2008) Effect of cobalt ions on the soluble proteome of a Rhodobacter sphaeroides carotenoidless mutant. In: Allen J, Gantt E, Golbeck J, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer, Netherlands, pp 1479–1483. doi:10.1007/978-1-4020-6709-9_318

    Chapter  Google Scholar 

  • Italiano F, D’Amici GM, Rinalducci S, De Leo F, Zolla L, Gallerani R, Trotta M, Ceci LR (2011) The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt. Res Microbiol 162(5):520–527

    Article  CAS  PubMed  Google Scholar 

  • Italiano F, Rinalducci S, Agostiano A, Zolla L, De Leo F, Ceci LR, Trotta M (2012) Changes in morphology, cell wall composition and soluble proteome in Rhodobacter sphaeroides cells exposed to chromate. Biometals. doi:10.1007/s10534-012-9561-7

    PubMed  Google Scholar 

  • Lay JO Jr (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20(4):172–194. doi:10.1002/mas.10003

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant-dependent” sugar fermentation. Arch Microbiol 117(2):119–122

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Cox JC, Gest H (1980) Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J Bacteriol 142(3):908–915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore MD, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174(5):1505–1514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nevin R (2000) How Lead Exposure Relates to Temporal Changes in IQ, Violent Crime, and Unwed Pregnancy. Environ Res 83(1):1–22. doi:10.1006/enrs.1999.4045

    Article  CAS  PubMed  Google Scholar 

  • Pisani F, Italiano F, de Leo F, Gallerani R, Rinalducci S, Zolla L, Agostiano A, Ceci LR, Trotta M (2009) Soluble proteome investigation of cobalt effect on the carotenoidless mutant of Rhodobacter sphaeroides. J Appl Microbiol 106(1):338–349

    Article  CAS  PubMed  Google Scholar 

  • Russell N, Harwood J (1979) Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochem J 181(2):339–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schiller J, Suss R, Arnhold J, Fuchs B, Lessig J, Muller M, Petkovic M, Spalteholz H, Zschornig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43(5):449–488. doi:10.1016/j.plipres.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Sistrom WR, Clayton RK (1964) Studies on a mutant of Rhodopseudomonas sphaeroides unable to grow photosynthetically. Biochim Biophys Acta 88:61–73

    CAS  PubMed  Google Scholar 

  • Smith PB, Snyder AP, Harden CS (1995) Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal Chem 67(11):1824–1830

    Article  CAS  PubMed  Google Scholar 

  • Sprott GD, Bakouche L, Rajagopal K (2006) Identification of sulfoquinovosyl diacylglycerol as a major polar lipid in Marinococcus halophilus and Salinicoccus hispanicus and substitution with phosphatidylglycerol. Can J Microbiol 52(3):209–219. doi:10.1139/w05-112

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in Chlamydomonas reinhardtii. FEBS Lett 581(23):4519–4522. doi:10.1016/j.febslet.2007.08.035

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Tsuzuki M, Sato N (2010) Regulation of synthesis and degradation of a sulfolipid under sulfur-starved conditions and its physiological significance in Chlamydomonas reinhardtii. New Phytol 185(3):676–686. doi:10.1111/j.1469-8137.2009.03115.x

    Article  CAS  PubMed  Google Scholar 

  • Touchstone JC (1995) Thin-layer chromatographic procedures for lipid separation. J Chromatogr B Biomed Appl 671(1–2):169–195

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki M, Moskvin OV, Kuribayashi M, Sato K, Retamal S, Abo M, Zeilstra-Ryalls J, Gomelsky M (2011) Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77(21):7551–7559. doi:10.1128/AEM.05463-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Baar BL (2000) Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24(2):193–219

    Article  PubMed  Google Scholar 

  • Yen HC, Marrs B (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. Arch Biochem Biophys 181(2):411–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Italian Ministero per l’Istruzione, l’Università e la Ricerca (MIUR), through research projects PRIN 2009KW27KE_003 and 2009RR5KCE_002, is gratefully acknowledged. This work was undertaken under the framework of COST Action CM0902 Molecular machineries for ion translocation across biomembranes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Palmisano or Massimo Trotta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvano, C.D., Italiano, F., Catucci, L. et al. The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. Biometals 27, 65–73 (2014). https://doi.org/10.1007/s10534-013-9687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9687-2

Keywords

Navigation