Skip to main content
Log in

Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Interaction of Ag with communities of soil saprotrophic organisms was studied in two different soils using a metagenomic approach. Three levels of Ag were applied to the soil samples: 0, 0.008 and 0.505 μg Ag/g soil. Silver was applied in mineral form as well as naturally bound in dry fruit-body biomass of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita solitaria. Contrasting behavior of fungi and bacteria in reaction to Ag dosages was observed. The majority of bacterial ribotypes tended to prefer the soil with low doses of Ag, the ribotypes of fungi were more abundant in untreated soils and soils treated with the highest Ag concentration. Organically bound and mineral forms of Ag did not differ substantially in their effects on microbes in samples. The results indicate that decomposing Ag-rich fungal biomass can significantly alter the soil microbiota. This can contribute to formation of spot-like non-homogeneities in soil microbial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45:3895–3901. doi:10.1021/es103946g

    PubMed  CAS  Google Scholar 

  • Borovička J, Řanda Z, Jelínek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. doi:10.1016/j.mycres.2007.08.015

    Article  PubMed  Google Scholar 

  • Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn C (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744. doi:10.1016/j.scitotenv.2010.02.031

    Article  PubMed  Google Scholar 

  • Chaperon S, Sauvé S (2007) Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem 39:2329–2338. doi:10.1016/j.soilbio.2007.04.004

    Article  CAS  Google Scholar 

  • Evans LJ, Barabash J (2010) Molybdenum, silver, thallium and vanadium, chap 22. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester

    Google Scholar 

  • Falandysz J, Danisiewicz D (1995) Bioconcetration factors (BCF) of silver in wild Agaricus campestris. Bull Environ Contam Toxicol 55:122–129. doi:10.1007/BF00212398

    Article  PubMed  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600. doi:10.1007/s10529-009-0197-9

    Article  PubMed  CAS  Google Scholar 

  • Grant A, Ogilvie LA (2003) Terminal restriction fragment length polymorphism data analysis. Appl Environ Microbiol 69:6342–6343. doi:10.1128/AEM.69.10.6342-6343.2003

    Article  PubMed  CAS  Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558. doi:10.1002/jpln.200900358

    Article  Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome

  • Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059. doi:10.1139/W10-094

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822. doi:10.1016/j.jhazmat.2011.04.005

    Article  PubMed  CAS  Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384. doi:10.1007/BF00324227

    Article  Google Scholar 

  • Murata T, Kanao-Koshikawa M, Takamatsu T (2005) Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Poll 164:103–118. doi:10.1007/s11270-005-2254-x

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. doi:10.1021/es801785m

    Article  PubMed  CAS  Google Scholar 

  • Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926. doi:10.1111/j.1469-8137.2010.03634.x

    Article  PubMed  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68. doi:10.1007/s00248-011-9861-4

    Article  PubMed  CAS  Google Scholar 

  • Pshennikova ES, Fillippovich SY, Bachurina GP, Ponomareva VD, Malygin AG (2011) The different effects of carbon dioxide on the toxicity of silver ions for prokaryotic and eukaryotic microorganisms. Biol Bull 38:297–300. doi:10.1134/S1062359011030113

    Article  CAS  Google Scholar 

  • Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259:99–107. doi:10.1023/B:JRNC.0000015813.27926.32

    Article  Google Scholar 

  • Sakai M, Matsuka A, Komura T, Kanazawa S (2004) Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J Microbiol Methods 59:81–89. doi:10.1016/j.mimet.2004.06.005

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Rodham E. Tulloss (Roosevelt, NJ, USA) and anonymous reviewer for helpful comments on the manuscript, to Jana Ďurišová (Clean laboratory, Institute of Geology, Prague) for ICP-MS analyses, and to Anna Žigová (Institute of Geology, Prague) for valuable advice on pedological characteristics. This research was supported by the project 504/11/0484 (Czech Science Foundation). Institutional support was provided by Long-term Development Program RVO 61388971 (Institute of Microbiology ASCR, v.v.i, Prague), Institutional Research Plan (IRP) AV0Z30130516 (Institute of Geology ASCR, v.v.i, Prague) and IRP AV0Z10480505 (Nuclear Physics Institute ASCR, v.v.i, Řež near Prague).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Borovička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryndler, M., Hršelová, H., Soukupová, L. et al. Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. Biometals 25, 987–993 (2012). https://doi.org/10.1007/s10534-012-9564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9564-4

Keywords

Navigation