Skip to main content
Log in

Siderophore production by actinomycetes isolates from two soil sites in Western Australia

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    PubMed  CAS  Google Scholar 

  • Al-Zarban SS, Al-Musallam AA, Abbas I, Stackebrandt E, Kroppenstedt RM (2002) Saccharomonospora halophila sp. nov., a novel halophilic actinomycete isolated from marsh soil in Kuwait. Int J Syst Evol Microbiol 52 (Pt 2):555-558

    Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxphenylalaninetyrosine mixtures. J Biol Chem 118(2):531–537

    CAS  Google Scholar 

  • Carrano CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G (2001) Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 14:119–125

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187(2):111–114

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53(4):517–530

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Fiedler HP (1993) Biosynthetic capacities of actinomycetes. 1. Screening for secondary metabolites by HPLC and UV-visible absorbance spectral libraries. Nat Prod Lett 2(2):119–128

    Article  CAS  Google Scholar 

  • Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196(2):147–151

    PubMed  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657. doi:10.1039/b906679a

    Article  PubMed  CAS  Google Scholar 

  • Imbert M, Bechet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    Article  CAS  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269. doi:10.1038/nchembio731

    Article  PubMed  CAS  Google Scholar 

  • Meiwes J, Fiedler HP, Zahner H, Konetschny-Rapp S, Jung G (1990) Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 32(5):505–510

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). Biometals 8(4):309–317

    Article  PubMed  CAS  Google Scholar 

  • Mukai A, Komaki H, Takagi M, Shin-ya K (2009) Novel siderophore, JBIR-16, isolated from Nocardia tenerifensis NBRC 101015. J Antibiot (Tokyo) 62(10):601–603. doi:10.1038/ja.2009.84

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Oves-Costales D, Kadi N, Challis GL (2009) The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb) 21(43):6530–6541. doi:10.1039/b913092f

    Article  Google Scholar 

  • Patzer SI, Braun V (2010) Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J Bacteriol 192(2):426–435. doi:10.1128/JB.01250-09

    Article  PubMed  CAS  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington DC, pp 3–17

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16(3):313–340. doi:10.1099/00207713-16-3-313

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Marshall CG (2004) Siderophore biosynthesis in bacteria. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington DC, pp 18–37

    Google Scholar 

  • Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151(Pt 9):2899–2905. doi:10.1099/mic.0.28139-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully funded by Actinogen Ltd. Grateful thanks go to Gerry Hartnett and his staff at PathWest Laboratory Medicine WA for 16S rRNA sequencing, and to Neil Campbell at Chem Centre for mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry C. Carson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Postmaster, A., Soon, H.P. et al. Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals 25, 285–296 (2012). https://doi.org/10.1007/s10534-011-9503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9503-9

Keywords

Navigation