Skip to main content
Log in

Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae)

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd) originating from atmospheric deposits, from industrial residues and from the application of phosphate fertilizers may accumulate in high concentrations in soil, water and food, thus becoming highly toxic to plants, animals and human beings. Once accumulated in an organism, Cd discharges and sets off a sequence of biochemical reactions and morphophysiological changes which may cause cell death in several tissues and organs. In order to test the hypothesis that Cd interferes in the metabolism of G. americana, a greenhouse experiment was conducted to measure eventual morphophysiological responses and cell death induced by Cd in this species. The plants were exposed to Cd concentrations ranging from 0 to 16 mg l−1, in a nutritive solution. In TUNEL reaction, it was shown that Cd caused morphological changes in the cell nucleus of root tip and leaf tissues, which are typical for apoptosis. Cadmium induced anatomical changes in roots and leaves, such as the lignification of cell walls in root tissues and leaf main vein. In addition, the leaf mesophyll showed increase of the intercellular spaces. On the other hand, Cd caused reductions in the net photosynthetic rate, stomatal conductance and leaf transpiration, while the maximum potential quantum efficiency of PS2 (Fv/Fm) was unchanged. Cadmium accumulated in the root system in high concentrations, with low translocation for the shoot, and promoted an increase of Ca and Zn levels in the roots and a decrease of K level in the leaves. High concentrations of Cd promoted morphophysiological changes and caused cell death in roots and leaves tissues of G. americana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida A-AF, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol 19:83–98

    Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increase miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100

    Article  CAS  Google Scholar 

  • Barbosa RMT, Almeida A-AF, Mielke MS, Loguercio LL, Mangabeira PAO, Gomes FP (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271

    Article  CAS  Google Scholar 

  • Berboodi BSH, Samadi L (2004) Detection of apoptotic bodies and oligonucleosomal DNA fragments in cadmium-treated root apical cells of Allium cepa Linnaeus. Plant Sci 167:411–416

    Article  Google Scholar 

  • Ceita GO, Macêdo JMA, Santos TB, Alemanno L, Gesteira AS, Micheli F, Mariano AC, Gramacho KP, Silva DC, Meinhardt L, Mazzafera P, Pereira GAG, Cascardo JC (2007) Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci 173:106–117

    Article  CAS  Google Scholar 

  • Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biol 328:23–31

    Article  CAS  PubMed  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  • Cosio C, Desantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Mol Brain Res 93:64–69

    Article  CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Califórnia Agricultural Experiment Station, Berkeley, p 32

    Google Scholar 

  • Houot V, Etienne P, Petitot A-S, Barbier S, Blein J-P, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose- dependent manner. J Exp Bot 52:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro

    Google Scholar 

  • Ma M, Lau P-S, Jia Y-T, Tsang W-K, Lam SKS, Tam NFY, Wong Y-S (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant. Festuca rubra cv. Merlin. Plant Sci 164:51–60

    Google Scholar 

  • Mendelssohn IA, Mckee KL, Kong T (2001) A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environ Exp Bot 46:263–275

    Article  CAS  Google Scholar 

  • Mielke MS, Almeida A-AF, Gomes FP, Aguilar MAG, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Nada E, Ferjani EBA, Ali ER, Bechir EBR, Imed EM, Makki EB (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62

    Article  CAS  Google Scholar 

  • Paiva HN, Carvalho JG, Siqueira JO, Miranda JRP, Fernandes AR (2004) Absorção de nutrientes por mudas de ipê-roxo (Tabebuia impetiginosa (Mart.) Standl.) em solução nutritiva contaminada por cádmio. Rev Árvore 28:189–197

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumalation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sass JE (1951) Botanical microtechnique. The Lowa State College Press, Ames

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidant systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Severo MIG, Oliveira AH, Loustalot MFG, Carneiro CG, Mangabeira PA, Labejof L, Almeida MP, Veado MARV (2004) Inductively coupled plasma-mass spectrometry (HR-ICP-MS) as a tool for environment biomonitoring. Rev Fis Appl Instrum 17:7–11

    CAS  Google Scholar 

  • Soares CRFS, Siqueira JO, Carvalho JG, Moreira FMS (2005) Fitoxidez de cádmio para Eucalyptus maculata e E. urophylla em solução nutritiva. Rev Árvore 29:175–183

    CAS  Google Scholar 

  • Sridhar BBM, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    Article  Google Scholar 

  • Stell RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Travis AJ, Mansfield TA (1979) Stomatal responses to light and CO2 are dependent on KCI concentration. Plant Cell Environ 2:319–323

    Article  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a tolerant Salix viminalis L. Part II. Microlocalization and cellular effect of cadmium. Environ Exp Bot 58:25–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by Fundação de Amparo a Pesquisa do Estado da Bahia (FAPESB) and Universidade Estadual de Santa Cruz (UESC). We also thank the technicians of the Service Central d’Analises, Lyon, França and Mr. Martin Brendel for their invaluable suggestions and manuscript review. V. L. Souza was supported by Conselho Nacional de Pesquisa (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex-Alan F. de Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, V.L., de Almeida, AA.F., Lima, S.G.C. et al. Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals 24, 59–71 (2011). https://doi.org/10.1007/s10534-010-9374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9374-5

Keywords

Navigation