Skip to main content
Log in

Characterization and in vitro Cytotoxicity Testing of Ethanolamine-derived Cadmium Chelating Agents

  • OriginalPaper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

We have synthesized and characterized the new cadmium chelating agent potassium bis(2-hydroxyethyl)aminoethyldithiocarbonate hemihydrate, K[bhexan] · 0.5H2O (2), that is structurally related to the known effective in vivo cadmium chelating agent potassium bis(2-hydroxyethyl)dithiocarbamate, K[bhedtc] (1). The corresponding cadmium complex of 2 differs from di(bis(2-hydroxyethyl)dithiocarbamato)cadmium(II), Cd(bhedtc)2 (3), in that the insoluble compound exhibits an elemental composition consistent with a cadmium:ligand ratio of 2:1. The cytotoxicity of the 13 was investigated using the human osteoblast-like cell line, Saos-2. Compounds 1 or 2 did not affect cell adherence or cell viability in the 100–500 μM concentration range studied, whereas 3 resulted in a concentration-dependent increase in loss of cell adherence and decrease in cell viability. Overall, the results of the loss of cell adherence, trypan blue exclusion and MTT assays showed that administration of 3 (cadmium complex of 1) resulted in cytotoxicity lower than that of cadmium chloride, but higher than that of the chelator 1 alone. The effect of simultaneous addition of cadmium chloride and 1 or 2 on cell viability was also assessed using the MTT assay. For the 100 μM cadmium chloride experiments, cell viability comparable to control cells was achieved for both 1 and 2 in the 100–500 μM concentration range studied. Cell viability comparable to control cells was achieved for 1 but not 2 in the 100–500 μM concentration range studied for the 200 μM cadmium chloride experiments. Thus 1 appears more effective than 2 in the ability to mediate the cytotoxic effects of cadmium in vitro upon concomitant administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen O (1999) Principles and recent developments in chelation treatment of metal intoxication. Chem Rev 99:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). 2005 Third National Report on Human Exposure to Environmental Chemicals (NCEH Pub. No. 05-0570). National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia 30341–3724.

  • Cesur H (2003) Determination of manganese, copper, cadmium and lead by FAAS after solid-phase extraction of their phenylpiperazine dithiocarbamate complexes on activated carbon. Turk J Chem 27:307–314

    CAS  Google Scholar 

  • Chatterjee M, Dwivedi VK, Khandekar K, Tandon SK (2004) Chelation in metal intoxication XLVI: Synthesis of some α-mercapto-β-substituted aryl acrylic acids and their in vitro cadmium chelating ability. Biomed Environ Sci 17: 27–32

    PubMed  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress Part I: Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1: 529–539

    Article  PubMed  CAS  Google Scholar 

  • Faggiani R, Gillespie RJ, Vekris JE. 1986 The cadmium(I) ion, Cd 2+2 ; X-ray crystal structure of Cd2(AlCl4)2. J Chem Soc Chem Comm 517–518.

  • Fischer AB (1995) Studies of cadmium chelator efficacy using mammalian cell cultures. Analyst 120: 975–978

    Article  PubMed  CAS  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Gale GR, Atkins LM, Walker EM, Jr, Smith AB, Jones MM (1983) Mechanism of diethyldithiocarbamate, dihydroxyethyldithiocarbamate, and dicarboxymethyldithiocarbamate action of distribution and excretion of cadmium. Ann Clin Lab Sci 13: 474–481

    PubMed  CAS  Google Scholar 

  • Gale GR, Atkins LM, Walker EM, Jr, Smith AB, Jones MM (1984) Dithiocarbamates and cadmium metabolism: Further correlations of cadmium chelate partition coefficients with pharmacologic activity. Ann Clin Lab Sci 14: 137–145

    PubMed  CAS  Google Scholar 

  • Gennari A, Cortese E, Boveri M, Casado J, Prieto P (2003) Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. Toxicology 183: 211–220

    Article  PubMed  CAS  Google Scholar 

  • Hatori A, Willhite CC, Jones MM, Sharma RP (1990) Dithiocarbamates and prevention of cadmium teratogenesis in the hamster. Teratology 42: 243–251

    Article  PubMed  CAS  Google Scholar 

  • Hileman B (2006) Electronic waste: States strive to solve burgeoning disposal problem as more waste ends up in developing countries. C&EN 84: 18–21

    Google Scholar 

  • Järup L, Alfvén T (2004) Low level cadmium exposure, renal and bone effects – the OSCAR study. Biometals 17: 505–509

    Article  PubMed  Google Scholar 

  • Järup L, Bellander T, Hogstedt C, Spang G (1998a) Mortality and cancer incidence in Swedish battery workers exposed to cadmium and nickel. Occup Environ Med 55: 755–759

    Google Scholar 

  • Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998b) Health effects of cadmium exposure – a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl 1): 1–51

    Google Scholar 

  • Jiang XH, Zhang WG, Zhong Y, Wang SL (2002) Synthesis and structure of the cadmium (II) complex:\([\hbox{Cd}(\hbox{C}_{5}\hbox{H}_{5}\hbox{N})_{2}(\hbox{S}_{2}\hbox{CO-}n\hbox{-C}_{4}\hbox{H}_{9})_{2}]\). Molecules 7: 549–553

    CAS  Google Scholar 

  • Jones MM, Cherian MG (1990) The search for chelate antagonists for chronic cadmium intoxication. Toxicology 62:1–25

    Article  PubMed  CAS  Google Scholar 

  • Jones MM, Cherian MG, Singh PK, Basinger MA, Jones SG (1991a) A comparative study of the influence of vicinal dithiols and a dithiocarbamate on the biliary excretion of cadmium in rat. Toxicol Appl Pharmacol 110: 241–250

    Article  CAS  Google Scholar 

  • Jones MM, Singh PK, Jones SG, Mukundan CR, Banton JA, Gale GR, Atkins LM, Smith AB (1991b) Chirality, charge, and chain branching effects on dithiocarbamate-induced mobilization of cadmium from intracellular deposits in mice. Chem Res Toxicol 4: 27–34

    Article  CAS  Google Scholar 

  • Kazantzis G (2004) Cadmium, osteoporosis, and calcium metabolism. BioMetals 17: 493–498

    Article  PubMed  CAS  Google Scholar 

  • Kelley C, Sargent DE, Uno JK (1999) Cadmium therapeutic agents. Curr Pharm Des 5: 229–240

    PubMed  CAS  Google Scholar 

  • Lemarié A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver HEP3B cells: Role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Kida S (1982) Photoreaction of tris(ethylenediamine)cobalt(III) ion with bis(2-hydroxyethyl)dithiocarbamate ion. Bull Chem Soc Jpn 55: 809–812

    Article  CAS  Google Scholar 

  • Nerudová J, Bláha K, Sokal A, Jehlicková H, Cikrt M (1991) Mobilization of aged cadmium from isolated rat hepatocytes by sulfhydryl chelators. Pol J Occup Med Environ Health 4:349–357

    PubMed  Google Scholar 

  • Nordberg GF (2004) Cadmium and health in the 21st century – historical remarks and trends for the future. BioMetals 17: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Ortiz G, Ballone P (1991) Metastability of doubly charged transition-metal dimers in density-functional theory. Phys Rev B 44: 5881–5884

    Article  CAS  Google Scholar 

  • Pages A, Casas JS, Sanchez A, Sordo J, Bravo J, Gayoso M (1985) Dithiocarbamates in Heavy Metal Poisoning: Complexes of N,N-di(2-hidroxyethyl)dithiocarbamate with Zn(ll), Cd(ll), Hg(ll), CH3Hg(II), and C6H5Hg(II). J lnorg Biochem 25: 35–42

    Article  CAS  Google Scholar 

  • Resa I, Carmona E, Gutierrez-Puebla E, Monge A (2004) Decamethyldizincocene, a stable compound of Zn(I) with a Zn–Zn bond. Science 305:1136–1138

    Article  PubMed  CAS  Google Scholar 

  • Ridd K, Alexander DJ, Reed CJ (2004) Foetal rat lung epithelial (FRLE) cells: Partial characterisation and response to pneumotoxins. Toxicol In Vitro 18:79–88

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: Prospective population study. Lancet 353:1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Tandon SK, Prasad S, Singh S (2000) Chelation in metal intoxication. XLIV: Efficacy of α-mercapto-β-(5-substituted, 2-furyl) acrylic acids in mobilizing intracellularly bound cadmium in rat. Biomed Environ Sci 13: 205–212

    PubMed  CAS  Google Scholar 

  • Tátrai E, Brózik M, Náray M, Adamis Z, Ungváry G (2001a) Combined pulmonary toxicity of cadmium chloride and sodium diethyldithiocarbamate. J Appl Toxicol 21:101–105

    Article  Google Scholar 

  • Tátrai E, Kováciková Z, Karácsony G, Hudák A, Adamis Z, Ungváry G (2001b) Effects of sodium diethyldithiocarbamate on type II pulmonary epithelial cells in vitro. J Toxicol Environ Health, Part A 62:207–216

    Article  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-κB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  • Van Assche FJ. 1998 A stepwise model to quantify the relative contribution of different environmental sources to human cadmium exposure. NiCad ’98, Prague, Czech Republic, September 21–22.

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192: 95–117

    Article  PubMed  CAS  Google Scholar 

  • Wätjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals 17: 65–78

    Article  PubMed  Google Scholar 

  • Yan H, Carter CE, Xu C, Singh PK, Jones MM, Johnson JE, Dietrich MS (1997) Cadmium-induced apoptosis in the urogenital organs of the male rat and its suppression by chelation. J Toxicol Environ Health 52: 149–168

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhong Y, Tan M, Tang N, Yu K (2003) Synthesis and Structure of bis(Dibutyldithiocarbamate)zinc(II):\(\hbox{Zn}_{2}[(n\hbox{-Bu})_{2}\hbox{NCSS}]_{4}\). Molecules 8: 411–417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant Number P20 RR016454 from the INBRE Program of the National Center for Research Resources. The authors acknowledge the help of Kendra G. Coonse in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukalin, M., Blanksma, M.K., Silva, T.D. et al. Characterization and in vitro Cytotoxicity Testing of Ethanolamine-derived Cadmium Chelating Agents. Biometals 20, 61–72 (2007). https://doi.org/10.1007/s10534-006-9015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9015-1

Keywords

Navigation