Skip to main content
Log in

Sunlight effects on the DMSP-sulfur and leucine assimilation activities of polar heterotrophic bacterioplankton

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The influence of solar ultraviolet radiation and photosynthetically active radiation (PAR) on summertime marine bacterial uptake and assimilation of sulfur from radiolabeled dimethlysulfoniopropionate (35S-DMSP) was studied at four Arctic and two Antarctic stations. Incubations with 3H-leucine were also conducted for comparative purposes as a measurement of bacterial activity. Arctic waters were characterized by large numbers of colonial Phaeocystis pouchetii and higher DMSP concentrations than in the two diatom-dominated Antarctic samples. Exposure to full sunlight radiation (280–700 nm), and to a lesser extent to PAR + UVA (320–700 nm), generally decreased the bacterial assimilation of 3H-leucine with respect to darkness, and caused variable effects on 35S-DMSP assimilation. By using a single-cell approach involving microautoradiography we found high percentages of sulfur assimilating cells within the bacterial groups Gammaproteobacteria, Bacteroidetes, SAR11 and Roseobacter despite the varying DMSP concentrations between Arctic and Antarctic samples. The dominant SAR11 clade contributed 50–70% of the cells assimilating both substrates in the Arctic stations, whereas either Gammaproteobacteria or SAR11 were the largest contributors to 3H-leucine uptake in samples from the two Antarctic stations. Only one station was analyzed for single-cell 35S-DMSP assimilation in Antarctica, and Gammaproteobacteria were major contributors to its uptake, providing the first evidence for Antarctic bacteria actively taking up 35S-DMSP. PAR + UVA repeatedly increased the number of SAR11 cells assimilating 3H-leucine. This pattern also occurred with other 35S-DMSP assimilating groups, though not so consistently. Our results support a widespread capability of polar bacteria to assimilate DMSP-sulfur during the season of maximum DMSP concentrations, and show for the first time that all major polar taxa can be highly active at this assimilation under the appropriate circumstances. Our findings further confirm the role of sunlight as a modulator of heterotrophic carbon and sulfur fluxes in the surface ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aas P, Lyons MM, Pledger R, Mitchell DL, Jeffrey WH (1996) Inhibition of bacterial activities by solar radiation in nearshore waters and the Gulf of Mexico. Aquat Microb Ecol 11:229–238

    Article  Google Scholar 

  • Alonso C, Pernthaler J (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microbiol 71:1709–1716

    Article  Google Scholar 

  • Alonso C, Pernthaler J (2006) Concentration-dependent patterns of leucine incorporation by coastal picoplankton. Appl Environ Microbiol 72:2141–2147

    Article  Google Scholar 

  • Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R (2006) Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters. Appl Environ Microbiol 72:5806–5813

    Article  Google Scholar 

  • Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alió C (2008) Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol 10:2444–2454

    Article  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Google Scholar 

  • Archer SD, Ragni M, Webster R, Airs RL, Geiderb RJ (2010) Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi. Limnol Oceanogr 55:1579–1589

    Article  Google Scholar 

  • Arrieta JM, Weinbauer MG, Herndl GJ (2000) Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria. Appl Environ Microbiol 66:1468–1473

    Article  Google Scholar 

  • Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518

    Article  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich S, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  Google Scholar 

  • Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics—II. Significance for the microbial community. Harmful Algae 4:875–893

    Article  Google Scholar 

  • Buma AGJ, Helbling EW, de Boer MK, Villafañe VE (2001) Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J Photoch Phobio B 62:9–18

    Article  Google Scholar 

  • Burkill PH, Archer SD, Robinson C, Nightingale PD, Groom SB, Tarran GA, Zubkov MV (2002) Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Sea Res Pt II 49:2863–2885

    Article  Google Scholar 

  • Church MJ, Ducklow HW, Karl DA (2004) Light dependence of [H-3]leucine incorporation in the oligotrophic North Pacific ocean. Appl Environ Microbiol 70:4079–4087

    Article  Google Scholar 

  • Convey P, Fogg GE (2007) The effects of radiation. In: Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili JM, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (eds) The biology of polar regions. Oxford University, New York, pp 42–49

    Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    Article  Google Scholar 

  • Curran MAJ, Jones GB (2000) Dimethyl sulfide in the Southern Ocean: seasonality and flux. J Geophys Res 105:20451–20459

    Article  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  Google Scholar 

  • Davidson AT, van der Heijden A (2000) Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on bacterioplankton. Aquat Microb Ecol 21:257–264

    Article  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Eilers H, Pernthaler J, Peplies J, Glockner FO, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142

    Article  Google Scholar 

  • Elifantz H, Malmstrom RR, Cottrell MT, Kirchman DL (2005) Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl Environ Microbiol 71:7799–7805

    Article  Google Scholar 

  • Elifantz H, Dittell AI, Cottrell MT, Kirchman DL (2007) Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 50:39–49

    Article  Google Scholar 

  • Fogg GE (1977) Aquatic primary production in the Antarctic. Philos Trans R Soc Lond B Biol Sci 279:27–38

    Article  Google Scholar 

  • Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224

    Google Scholar 

  • Gentile G, Giuliano L, D’Auria G, Smedile F, Azzaro M, De Domenico M, Yakimov MM (2006) Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ Microbiol 8:2150–2161

    Article  Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R, Pedrós-Alió C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  Google Scholar 

  • González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819

    Google Scholar 

  • González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, Moran MA (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246

    Article  Google Scholar 

  • Hernández EA, Ferreyra GA, Mac Cormack WP (2006) Response of two Antarctic marine bacteria to different natural UV radiation doses and wavelengths. Antarct Sci 18:205–212

    Article  Google Scholar 

  • Herndl GJ, Müller-Niklas G, Frick J (1993) Major role of ultraviolet B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361:717–719

    Article  Google Scholar 

  • Herndl GJ, Brugger A, Hager S, Kaiser E, Obernosterer I, Reitner B, Slezak D (1997) Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. Plant Ecol 128:42–51

    Article  Google Scholar 

  • Jones AE, Shanklin JD (1995) Continued decline of ozone over Halley, Antarctica, since 1985. Nature 376:409–411

    Article  Google Scholar 

  • Kaiser E, Herndl GJ (1997) Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters. Appl Environ Microbiol 63:4026–4031

    Google Scholar 

  • Karsten UK, Kuck K, Vogt C, Kirst GO (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as cryoprotectant. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, pp 143–153

    Chapter  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman E, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, New York, pp 167–182

    Chapter  Google Scholar 

  • Kiene RP, Slezak D (2006) Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol Oceanogr-Meth 4:80–95

    Article  Google Scholar 

  • Kiene RP, Linn LJ, Gonzalez J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65:4549–4558

    Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224

    Article  Google Scholar 

  • Kirchman D, Knees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    Google Scholar 

  • Kirst GO (1996) Osmotic adjustment in phytoplankton and macroalgae: the use of dimethylsulfoniopropionate (DMSP). In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York, pp 121–129

    Chapter  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  Google Scholar 

  • Lasternas S, Agustí S (2010) Phytoplankton community structure during the record Arctic ice-melting of summer 2007. Polar Biol 33:1709–1717

    Google Scholar 

  • Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulfide and Phaeocystis: a review. J Marine Syst 5:41–53

    Article  Google Scholar 

  • Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004a) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean. Appl Environ Microbiol 70:4129–4135

    Article  Google Scholar 

  • Malmstrom RR, Kiene RP, Kirchman DL (2004b) Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol Oceanogr 49:597–606

    Article  Google Scholar 

  • Malmstrom RR, Straza TRA, Cottrell MT, Kirchman DL (2007) Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 47:45–55

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum CytophagaFlavobacterBacteroides in the natural environment. Microbiology 142:1097–1106

    Article  Google Scholar 

  • Matrai P, Vernet M (1997) Dynamics of the vernal bloom in the marginal ice-zone of the Barents Sea: DMS and DMSP budgets. J Geophys Res 102:22965–22979

    Article  Google Scholar 

  • Morris RM, Rappe MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  Google Scholar 

  • Müller R, Crutzen PJ, Grooss JU, Bruhl C, Russell JM, Gernandt H, McKenna DS, Tuck AF (1997) Severe chemical ozone loss in the Arctic during the winter of 1995–96. Nature 389:709–712

    Article  Google Scholar 

  • Murray AE, Wu KY, Moyer CL, Karl DM, DeLong EF (1999) Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquat Microb Ecol 18:263–273

    Article  Google Scholar 

  • Neale PJ, Cullen JJ, Davis RF (1998) Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia confluence during the austral spring. Limnol Oceanogr 43:433–448

    Article  Google Scholar 

  • Pakulski JD, Kase JP, Meador JA, Jeffrey WH (2008) Effect of stratospheric ozone depletion and enhanced ultraviolet radiation on marine bacteria at Palmer Station, Antarctica in the early austral spring. Photochem Photobiol 84:215–221

    Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  Google Scholar 

  • Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, Marrase CL (2004) Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70:6753–6766

    Article  Google Scholar 

  • Pinhassi J, Simó R, González JM, Vila M, Alonso-Sáez L, Kiene RP, Moran MA, Pedrós-Alió C (2005) Dimethylsulfoniopropionate turnover is linked to the composition and dynamics of the bacterioplankton assemblage during a microcosm phytoplankton bloom. Appl Environ Microbiol 71:7650–7660

    Article  Google Scholar 

  • Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL (1997) High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic Ocean. Deep Sea Res Pt II 44:1645–1663

    Article  Google Scholar 

  • Riemann L, Steward GF, Azam F (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66:578–587

    Article  Google Scholar 

  • Rignot E, Bamber JL, Van Den Broeke MR, Davis C, Li YH, Van De Berg WJ, Van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472

    Article  Google Scholar 

  • Ruiz-González C, Galí M, Sintes E, Herndl GJ, Gasol JM, Simó R Sunlight effects on the osmoheterotrophic behaviour of Arctic and Antarctic phytoplankton. Environ Microbiol (Submitted)

  • Ruiz-González C, Lefort T, Galí M, Sala MM, Sommaruga R, Simó R, Gasol JM (2012) Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01247.x

  • Sakka A, Gosselin M, Levasseur M, Michaud S, Monfort P, Demers S (1997) Effects of reduced ultraviolet radiation on aqueous concentrations of dimethylsulfoniopropionate and dimethylsulfide during a microcosm study in the Lower St. Lawrence Estuary. Mar Ecol Prog Ser 149:227–238

    Article  Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, New York, pp 57–81

    Chapter  Google Scholar 

  • Saló V, Simó R, Vila-Costa M, Calbet A (2009) Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ Microbiol 11:3063–3072

    Article  Google Scholar 

  • Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16:287–294

    Article  Google Scholar 

  • Simó R, Grimalt JO, Albaiges J (1996) Sequential method for the field determination of nanomolar concentrations of dimethyl sulfoxide in natural waters. Anal Chem 68:1493–1498

    Article  Google Scholar 

  • Simó R, Archer SD, Pedrós-Alió C, Gilpin L, Stelfox-Widdicombe CE (2002) Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol Oceanogr 47:53–61

    Article  Google Scholar 

  • Simó R, Vila-Costa M, Alonso-Sáez L, Cardelús C, Guadayol O, Vázquez-Domínguez E, Gasol JM (2009) Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat Microb Ecol 57:43–55

    Article  Google Scholar 

  • Simon M, Glockner FO, Amann R (1999) Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat Microb Ecol 18:275–284

    Article  Google Scholar 

  • Sintes E, Herndl GJ (2006) Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with micro autoradiography. Appl Environ Microbiol 72:7022–7028

    Article  Google Scholar 

  • Slezak D, Herndl GJ (2003) Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L). Mar Ecol Prog Ser 246:61–71

    Article  Google Scholar 

  • Slezak D, Brugger A, Herndl GJ (2001) Impact of solar radiation on the biological removal of dimethylsulfoniopropionate and dimethylsulfide in marine surface waters. Aquat Microb Ecol 25:87–97

    Article  Google Scholar 

  • Slezak D, Kiene RP, Toole DA, Simó R, Kieber DJ (2007) Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquat Sci 69:377–393

    Article  Google Scholar 

  • Smith D, Azam F (1992) A simple, economical method for measuring bacteria protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275

    Article  Google Scholar 

  • Straza TRA, Ducklow HW, Murray AE, Kirchman D (2010) Abundance and single-cell activity of bacterial groups in Antarctic coastal waters. Limnol Oceanogr 55:2526–2536

    Article  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744

    Article  Google Scholar 

  • Vila M, Simó R, Kiene RP, Pinhassi J, González JA, Moran MA, Pedrós-Alió C (2004) Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Appl Environ Microbiol 70:4648–4657

    Article  Google Scholar 

  • Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP (2006) Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314:652–654

    Article  Google Scholar 

  • Vila-Costa M, Pinhassi J, Alonso C, Pernthaler J, Simó R (2007) An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environ Microbiol 9:2451–2463

    Article  Google Scholar 

  • Vila-Costa M, Simó R, Alonso-Sáez L, Pedrós-Alió C (2008) Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J Marine Syst 74:957–963

    Article  Google Scholar 

  • Wickham S, Carstens M (1998) Effects of ultraviolet-B radiation on two arctic microbial food webs. Aquat Microb Ecol 16:163–171

    Article  Google Scholar 

  • Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH (2002) Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Res Pt II 49:3017–3038

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the chief scientists of the ATOS I and II cruises, C. M. Duarte and J. Dachs, and all technicians and the crew aboard the BIO Hespérides for their assistance and cooperation. The authors also thank J. Felipe for his help with the processing of the flow cytometry and chlorophyll samples. The authors are especially indebted to R. P. Kiene (University of South Alabama) for kindly providing 35S-DMSP. Financial support for this study was provided by the projects MODIVUS (CTM2005-04795/MAR), SUMMER (CTM2008-03309/MAR) and ATOS (POL2006-00550/CTM) funded by the Spanish Ministry of Science and Innovation (MICINN). C.R.-G. the receipt of a FPI studentship from the MICINN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Ruiz-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-González, C., Galí, M., Gasol, J.M. et al. Sunlight effects on the DMSP-sulfur and leucine assimilation activities of polar heterotrophic bacterioplankton. Biogeochemistry 110, 57–74 (2012). https://doi.org/10.1007/s10533-012-9699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9699-y

Keywords

Navigation