Skip to main content

Advertisement

Log in

Investigating the inter-relationships between water attenuated irradiance, primary production and DMS(P)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Both solar irradiance and primary production have been proposed as independent controls on seawater dimethyl sulphide (DMS) and dimethylsulphoniopropionate (DMSP) concentrations. However, irradiance also drives photosynthesis, and thus influences a complex set of inter-related processes that modulate marine DMS. We investigate the potential inter-relationships between the rate of primary production (carbon assimilation), water-attenuated irradiance and DMS/DMSP dynamics by applying correlation analysis to a high resolution, concurrently sampled in situ data set from a range of latitudes covering multiple biogeochemical provinces from 3 of the 4 Longhurst biogeochemical domains. The combination of primary production (PP) and underwater irradiance (Iz) within a multivariate regression model is able to explain 55% of the variance in DMS concentrations from all depths within the euphotic zone and 66% of the variance in surface DMS concentrations. Contrary to some previous studies we find a variable representing biological processes is necessary to better account for the variance in DMS. We find that the inclusion of Iz accounts for variance in DMS that is independent from the variance explained by PP. This suggests an important role for solar irradiance (beyond the influence of irradiance upon primary production) in mediating the relationship between the productivity of the ecosystem, DMS/DMSP production and ambient seawater DMS concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer SD, Smith GC, Nightingale PD, Widdicombe CE, Tarran GA, Rees AP, Burkill PH (2002) Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea. Deep Sea Res Pt II 49(15):2979–2999. doi:10.1016/s0967-0645(02)00067-x

    Article  Google Scholar 

  • Archer SD, Ragni M, Webster R, Airs RL, Geider RJ (2010) Dimethyl sulfoniopropionate and dimethyl sulfide production in response to photoinhibition in Emiliania huxleyi. Limnol Oceanogr 55(4):1579–1589. doi:10.4319/lo.2010.55.4.1579

    Article  Google Scholar 

  • Baker KS, Frouin R (1987) Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnol Oceanogr 32(6):1370–1377

    Article  Google Scholar 

  • Beaufort L, Probert I, De Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M, Rost B, Rickaby REM, De Vargas C (2011) Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476(7358):80–83. doi:10.1038/nature10295

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20

    Article  Google Scholar 

  • Bell TG, Malin G, McKee CM, Liss PS (2006) A comparison of dimethylsulphide (DMS) data from the Atlantic Meridional Transect (AMT) programme with proposed algorithms for global surface DMS concentrations. Deep Sea Res Pt II 53(14–16):1720–1735. doi:10.1016/j.dsr2.2006.05.013

    Article  Google Scholar 

  • Bell TG, Malin G, Kim YN, Steinke M (2007) Spatial variability in DMSP-lyase activity along an Atlantic meridional transect. Aquat Sci 69(3):320–329. doi:10.1007/s00027-007-0894-1

    Article  Google Scholar 

  • Bell TG, Poulton AJ, Malin G (2010) Strong linkages between dimethylsulphoniopropionate (DMSP) and phytoplankton community physiology in a large subtropical and tropical Atlantic Ocean data set. Global Biogeochem Cycles 24(3):GB3009. doi:10.1029/2009gb003617

    Article  Google Scholar 

  • Bell TG, Malin G, Lee GA, Stefels J, Archer S, Steinke M, Matrai P (2011) Global oceanic DMS data inter-comparability. Biogeochemistry (this issue). doi:10.1007/s10533-011-9662-3

  • Belviso S, Masotti I, Tagliabue A, Bopp L, Brockmann P, Fichot C, Caniaux G, Prieur L, Ras J, Uitz J, Loisel H, Dessailly D, Alvain S, Kasamatsu N, Fukuchi M (2011) DMS dynamics in the most oligotrophic subtropical zones of the global ocean. Biogeochemistry. doi:10.1007/s10533-011-9648-1

  • Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466(7306):591–596. doi:10.1038/nature09268

    Article  Google Scholar 

  • Brimblecombe P, Shooter D (1986) Photo-oxidation of dimethylsulphide in aqueous solution. Mar Chem 19(4):343–353

    Article  Google Scholar 

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecol Model 14(1–2):1–19

    Article  Google Scholar 

  • Burkill PH, Archer SD, Robinson C, Nightingale PD, Groom SB, Tarran GA, Zubkov MV (2002) Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Sea Res Pt II 49(15):2863–2885. doi:10.1016/s0967-0645(02)00061-9

    Article  Google Scholar 

  • Caldeira K, Wickett M (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110(9):1–12. doi:10.1029/2004jc002671

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326(6114):655–661

    Article  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87(19):7507–7511

    Article  Google Scholar 

  • Derevianko GJ, Deutsch C, Hall A (2009) On the relationship between ocean DMS and solar radiation. Geophys Res Lett 36(17). Art no L17606. doi:10.1029/2009gl039412

  • Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Philip Grime J, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Colin Prentice I, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Ian Woodward F (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Change Biol 7(8):849–882. doi:10.1046/j.1365-2486.2001.00448.x

    Article  Google Scholar 

  • Hatton AD (2002) Influence of photochemistry on the marine biogeochemical cycle of dimethylsulphide in the northern North Sea. Deep Sea Res Pt II 49(15):3039–3052. doi:10.1016/s0967-0645(02)00070-x

    Article  Google Scholar 

  • Hopkins FE, Turner SM, Nightingale PD, Steinke M, Bakker D, Lissa PS (2010) Ocean acidification and marine trace gas emissions. Proc Natl Acad Sci USA 107(2):760–765. doi:10.1073/pnas.0907163107

    Article  Google Scholar 

  • Jerlov NG (1974) A simple method for measuring quanta irradiance in the ocean, Report 24. Inst. Fysik Oceanografi, Kobenhavens Universitet

  • Jerlov NG (1977) Classification of sea water in terms of quanta irradiance. J Cons Int Explor Mer 37(3):281–287

    Google Scholar 

  • Jickells TD, Liss PS, Broadgate W, Turner S, Kettle AJ, Read J, Baker J, Cardenas LM, Carse F, Hamren-Larssen M, Spokes L, Steinke M, Thompson A, Watson A, Archer SD, Bellerby RGJ, Law CS, Nightingale PD, Liddicoat MI, Widdicombe CE, Bowie A, Gilpin LC, Moncoiffé G, Savidge G, Preston T, Hadziabdic P, Frost T, Upstill-Goddard R, Pedrós-Alió C, Simó R, Jackson A, Allen A, DeGrandpre MD (2008) A Lagrangian biogeochemical study of an eddy in the Northeast Atlantic. Prog Oceanogr 76(3):366–398. doi:10.1016/j.pocean.2008.01.006

    Article  Google Scholar 

  • Jitts HR, Morel A, Saijo Y (1976) The relation of oceanic primary production to available photosynthetic irradiance. Aust J Mar Freshw Res 27:441–454

    Article  Google Scholar 

  • Johnson MT (2010) A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci 6(4):913–932. doi:10.5194/os-6-913-2010

    Article  Google Scholar 

  • Joint I, Pomroy A (1993) Phytoplankton biomass and production in the southern North Sea. Mar Ecol Prog Ser 99(1–2):169–182

    Article  Google Scholar 

  • Joint I, Pomroy A, Savidge G, Boyd P (1993) Size-fractionated primary productivity in the northeast Atlantic in May-July 1989. Deep Sea Res Pt II 40(1–2):423–440

    Article  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington D.C., pp 167–182

    Chapter  Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res Atmos 105(D22):26793–26808

    Article  Google Scholar 

  • Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simó R, Staubes R, Turner S, Uher G (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob Biogeochem Cycles 13(2):399–444

    Article  Google Scholar 

  • Kieber DJ, Jiao J, Kiene RP, Bates TS (1996) Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. J Geophys Res Oceans 101(C2):3715–3722

    Article  Google Scholar 

  • Kiene RP, Slezak D (2006) Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol Oceanogr 4(Apr):80–95

    Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43(3–4):209–224. doi:10.1016/s1385-1101(00)00023-x

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13(11):1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycles 25(1). Art no GB1004. doi:10.1029/2010gb003850

  • Le Clainche Y, Vezina A, Levasseur M, Cropp RA, Gunson JR, Vallina SM, Vogt M, Lancelot C, Allen JI, Archer SD, Bopp L, Deal C, Elliott S, Jin M, Malin G, Schoemann V, Simo R, Six KD, Stefels J (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Glob Biogeochem Cycles 24(3). Art no GB3021. doi:10.1029/2009gb003721

  • Liss PS, Slater PG (1974) Flux of gases across the Air-Sea interface. Nature 247(5438):181–184. doi:10.1038/247181a0

    Article  Google Scholar 

  • Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanogr 36(2):77–167. doi:10.1016/0079-6611(95)00015-1

    Article  Google Scholar 

  • Macintyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5(1):12–17. doi:10.1016/s1360-1385(99)01504-6

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19(4). Art no GB4025. doi:10.1029/2004gb002402

  • Malin G, Turner S, Liss P, Holligan P, Harbour D (1993) Dimethylsulphide and dimethylsulphoniopropionate in the Northeast atlantic during the summer coccolithophore bloom. Deep Sea Res Pt I 40(7):1487–1508

    Article  Google Scholar 

  • Marra J (1997) Analysis of diel variability in chlorophyll fluorescence. J Mar Res 55(4):767–784

    Article  Google Scholar 

  • Marra J (2002) Approaches to the measurement of plankton production. In: Williams PJ, Thomas DN, Reynolds CS (eds) Phytoplanton productivity, 1st edn. Blackwell Science, Hoboken, pp 79–107

    Google Scholar 

  • Masotti I, Belviso S, Alvain S, Johnson JE, Bates TS, Tortell PD, Kasamatsu N, Mongin M, Marandino CA, Saltzman ES, Moulin C (2010) Spatial and temporal variability of the dimethylsulfide to chlorophyll ratio in the surface ocean: an assessment based on phytoplankton group dominance determined from space. Biogeosciences 7(10):3215–3237. doi:10.5194/bg-7-3215-2010

    Article  Google Scholar 

  • Matrai PA (1997) Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethyl sulfide and dimethylsulfoniopropionate budgets. J Geophys Res Oceans 102((C10)):22965–22979

    Article  Google Scholar 

  • Matrai PA, Keller MD (1993) Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine. Cont Shelf Res 13(8–9):831–843

    Article  Google Scholar 

  • Matrai P, Vernet M, Wassmann P (2007) Relating temporal and spatial patterns of DMSP in the Barents Sea to phytoplankton biomass and productivity. J Mar Syst 67(1–2):83–101. doi:10.1016/j.jmarsys.2006.10.001

    Article  Google Scholar 

  • Miles CJ, Bell TG, Lenton TM (2009) Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data. Biogeosciences 6(9):1927–1934. doi:10.1029/1999JC000111

    Article  Google Scholar 

  • Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry. Prentice Hall, Harlow

    Google Scholar 

  • Paytan A, Mackey KRM, Chen Y, Lima ID, Doney SC, Mahowald N, Labiosa R, Post AF (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci USA 106(12):4601–4605. doi:10.1073/pnas.0811486106

    Article  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35(3). Art no L03618. doi:10.1029/2007GL031745

  • Poulton AJ, Holligan PM, Hickman A, Kim YN, Adey TR, Stinchcombe MC, Holeton C, Root S, Woodward EMS (2006) Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean. Deep Sea Res Pt II 53(14–16):1593–1610. doi:10.1016/j.dsr2.2006.05.007

    Article  Google Scholar 

  • Savidge G, Gilpin L (1999) Seasonal influences on size-fractionated chlorophyll a concentrations and primary production in the north-west Indian Ocean. Deep Sea Res Pt II 46(3–4):701–723. doi:10.1016/s0967-0645(98)00124-6

    Article  Google Scholar 

  • Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16(6):287–294

    Article  Google Scholar 

  • Simó R, Pedrós-Alió C (1999a) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402(6760):396–399

    Article  Google Scholar 

  • Simó R, Pedrós-Alió C (1999b) Short-term variability in the open ocean cycle of dimethylsulfide. Glob Biogeochem Cycles 13(4):1173–1181. doi:10.1029/1999gb900081

    Article  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Optics 20(2):177–184

    Article  Google Scholar 

  • Smith GC, Clark T, Knutsen L, Barrett E (1999) Methodology for analyzing dimethyl sulfide and dimethyl sulfoniopropionate in seawater using deuterated internal standards. Anal Chem 71(24):5563–5568. doi:10.1021/ac990211q

    Article  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43(3–4):183–197. doi:10.1016/s1385-1101(00)00030-7

    Article  Google Scholar 

  • Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83(1–3):245–275. doi:10.1007/s10533-007-9091-5

    Article  Google Scholar 

  • Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87(2):245–251. doi:10.1037/0033-2909.87.2.245

    Article  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418(6895):317–320. doi:10.1038/nature00851

    Article  Google Scholar 

  • Toole DA, Siegel DA (2004) Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophys Res Lett 31(9):L09308. doi:10.1029/2004gl019581

    Article  Google Scholar 

  • Toole DA, Kieber DJ, Kiene RP, Siegel DA, Nelson NB (2003) Photolysis and the dimethylsulfide (DMS) summer paradox in the Sargasso Sea. Limnol Oceanogr 48(3):1088–1100

    Article  Google Scholar 

  • Toole DA, Slezak D, Kiene RP, Kieber DJ, Siegel DA (2006) Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean. Deep Sea Res Pt I 53(1):136–153. doi:10.1016/j.dsr.2005.09.003

    Article  Google Scholar 

  • Turner SM, Malin G, Bågander LE, Leck C (1990) Interlaboratory calibration and sample analysis of dimethyl sulphide in water. Mar Chem 29(C):47–62

    Article  Google Scholar 

  • Vallina SM, Simó R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315(5811):506–508. doi:10.1126/science.1133680

    Article  Google Scholar 

  • Vallina SM, Simó R, Gasso S, De Boyer-Montegut C, del Rio E, Jurado E, Dachs J (2007) Analysis of a potential “solar radiation dose-dimethylsulfide-cloud condensation nuclei” link from globally mapped seasonal correlations. Global Biogeochem Cycles 21(16). Art no GB2004. doi:10.1029/2006gb002787

  • Vallina SM, Simó R, Anderson TR, Gabric A, Cropp R, Pacheco JM (2008) A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer paradox. J Geophys Res Biogeosci 113(1). Art no G01009. doi:10.1029/2007jg000415

  • Vernet M, Matrai PA, Andreassen I (1998) Synthesis of particulate and extracellular carbon by phytoplankton at the marginal ice zone in the Barents Sea. J Geophys Res Oceans 103(C1):1023–1037

    Article  Google Scholar 

  • Vogt M, Vallina SM, Buitenhuis ET, Bopp L, Le Quéré C (2010) Simulating dimethylsulphide seasonality with the Dynamic Green Ocean Model PlankTOM5. J Geophys Res Oceans 115(6). Art no C06021. doi:10.1029/2009jc005529

  • Weisberg S (2005) Applied linear regression. Wiley series on probability and statistics, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992

    Article  Google Scholar 

  • Wilcox R (2010) Fundamentals of modern statistical methods: substantially improving power and accuracy, 2nd edn. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank Paty Matrai, Kalle Olli, Paul Wassmann and María Vernet for providing the Barents Sea data. We thank Alex Poulton for providing the AMT primary production data and the British Oceanographic Data Centre (BODC) for providing the ACSOE and DISCO data. We thank Valerie Livina for her statistical advice. We thank two anonymous reviewers and Rafel Simó for their constructive comments that helped improve this manuscript. This work is supported by a Dean of Students Scholarship at the School of Environmental Sciences, University of East Anglia (Miles) and by the UK Natural Environment Research Council (NERC) as part of SOLAS Project Integration (Bell; NE/E001696/1) and NERC QUEST (Suntharalingam; NE/G006725/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Miles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, C.J., Bell, T.G. & Suntharalingam, P. Investigating the inter-relationships between water attenuated irradiance, primary production and DMS(P). Biogeochemistry 110, 201–213 (2012). https://doi.org/10.1007/s10533-011-9697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9697-5

Keywords

Navigation