Skip to main content
Log in

Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems is significant and can be a dominant source of new N to many watersheds. Bacterially mediated denitrification in lake sediments may ameliorate the effects of N loading by permanently removing such inputs. We measured denitrification in sediments collected from lakes in the Colorado Rocky Mountains (USA) receiving elevated (5–8 kg N ha−1 y−1) or low (<2 kg N ha−1 y−1) inputs of atmospheric N deposition. The nitrate (NO3 ) concentration was significantly greater in high-deposition lakes (11.3 μmol l−1) compared to low-deposition lakes (3.3 μmol l−1). Background denitrification was positively related to NO3 concentrations and we estimate that the sampled lakes are capable of removing a significant portion of N inputs via sediment denitrification. We also conducted a dose–response experiment to determine whether chronic N loading has altered sediment denitrification capacity. Under Michaelis–Menten kinetics, the maximum denitrification rate and half-saturation NO3 concentration did not differ between deposition regions and were 765 μmol N m−2 h−1 and 293 μmol l−1 NO3 , respectively, for all lakes. We enumerated the abundances of nitrate- and nitrite-reducing bacteria and found no difference between high- and low-deposition lakes. The abundance of these bacteria was related to available light and bulk sediment resources. Our findings support a growing body of evidence that lakes play an important role in N removal and, furthermore, suggest that current levels of N deposition have not altered the abundance of denitrifying bacteria or saturated the capacity for sediment denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forests; hypotheses revised. Bioscience 48:921–934

    Article  Google Scholar 

  • Baron JS, Campbell DH (1997) Nitrogen fluxes in a high elevation Colorado Rocky Mountain basin. Hydrol Process 11:783–799

    Article  Google Scholar 

  • Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Minear JT, Moraska B (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–368

    Article  Google Scholar 

  • Bergstrom AK, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–643

    Article  Google Scholar 

  • Bernot MJ, Dodds WK (2005) Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8:442–453

    Article  Google Scholar 

  • Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Microbiol 42:1074–1084

    Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For Ecol Manag 196:43–56

    Article  Google Scholar 

  • Burns DA (2004) The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA—a critical review. Environ Pollut 127:257–269

    Article  Google Scholar 

  • Campbell DH, Kendall C, Chang CCY, Silva SR, Tonnessen KA (2002) Pathways for nitrate release from an alpine watershed: determination using delta N-15 and delta O-18. Water Resour Res 38:9

    Google Scholar 

  • Cannavo P, Richaume A, Lafolie F (2004) Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities. Soil Biol Biochem 36:463–478

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–691

    Google Scholar 

  • Clow DW, Sickman JO, Striegl RG, Krabbenhoft DP, Elliott JG, Dornblaser M, Roth DA, Campbell DH (2003) Changes in the chemistry of lakes and precipitation in high-elevation national parks in the western United States, 1985–1999. Water Resour Res 39:1171

    Article  Google Scholar 

  • Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121

    Article  Google Scholar 

  • Dillon PJ, Molot LA (1990) The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry 11:23–43

    Article  Google Scholar 

  • Dong LF, Thornton CO, Nedwell DB, Underwood GJC (2000) Denitrification in sediments of the River Colne estuary, England. Mar Eco Progr Ser 203:109–122

    Article  Google Scholar 

  • Earl SR, Valett HM, Webster JR (2006) Nitrogen saturation in stream ecosystems. Ecology 87:3140–3151

    Article  Google Scholar 

  • Eisenlord SD, Zak DR (2010) Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Sci Soc Am J 74:1157–1166

    Article  Google Scholar 

  • Elser JJ, Andersen T, Baron JS, Bergstrom AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009a) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837

    Article  Google Scholar 

  • Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS (2009b) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–3073

    Article  Google Scholar 

  • Elser JJ, Peace A, Kyle M, Wojewodzic M, McCrackin ML, Andersen T, Hessen DO (2010) Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecol Lett 13:1256–1261

    Article  Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in 3 alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Groffman PM, Altabet MA, Bohlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol Appl 16:2091–2122

    Article  Google Scholar 

  • Håkanson L, Jansson M (2002) Principles of Lake Sedimentology. Blackburn Press, Caldwell

    Google Scholar 

  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143–157

    Article  Google Scholar 

  • Hasegawa T, Okino T (2004) Seasonal variation of denitrification rate in Lake Suwa sediment. Limnology 5:33–39

    Article  Google Scholar 

  • Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ Microbiol 9:680–689

    Article  Google Scholar 

  • Kelly CA, Rudd JWM, Hesslein RH, Schindler DW, Dillon CT, Driscoll CT, Gherini SA, Hecky RE (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry 3:129–140

    Article  Google Scholar 

  • Kent HC, Porter KW (eds) (1980) Colorado geology. Rocky Mountain Association of Geologists, Denver

    Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    Google Scholar 

  • Koike I, Hattori A (1978) Denitrification and ammonia formation in anaerobic coastal sediments. Appl Environ Microbiol 35:278–282

    Google Scholar 

  • Laverman AM, Van Cappellen P, van Rotterdam-Los D, Pallud C, Abell J (2006) Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiol Ecol 58:179–192

    Article  Google Scholar 

  • Lovett GM, Rueth HM (1999) Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecol Appl 9:1330–1344

    Article  Google Scholar 

  • Lukkari K, Hartikainen H, Leivuori M (2007) Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444

    Article  Google Scholar 

  • McCarty GW, Mookherji S, Angier JT (2007) Characterization of denitrification activity in zones of groundwater exfiltration within a riparian wetland ecosystem. Biol Fertil Soils 43:691–698

    Article  Google Scholar 

  • McCrackin ML, Elser JJ (2010) Atmospheric nitrogen deposition alters denitrification and nitrous oxide production in lake sediments. Ecology 91:528–539

    Article  Google Scholar 

  • Molot LA, Dillon PJ (1993) Nitrogen mass balances and denitrification rates in central Ontario lakes. Biogeochemistry 20:195–212

    Article  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Findlay SEG, Gregory SV, Grimm NB, Johnson SL, McDowell WH, Meyer JL, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Johnson LT, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–206

    Article  Google Scholar 

  • Musselman RC, Slauson WL (2004) Water chemistry of high elevation Colorado wilderness lakes. Biogeochemistry 71:387–414

    Article  Google Scholar 

  • Nanus L, Campbell DH, Ingersoll GP, Clow DW, Mast MA (2003) Atmospheric deposition maps for the Rocky Mountains. Atmos Environ 37:4881–4892

    Article  Google Scholar 

  • Nanus L, Williams MW, Campbell DH, Elliott EM, Kendall C (2008) Evaluating regional patterns in nitrate sources to watersheds in national parks of the Rocky Mountains using nitrate isotopes. Environ Sci Technol 42:6487–6493

    Article  Google Scholar 

  • Nanus L, Williams MW, Campbell DH, Tonnessen KA, Blett T, Clow DW (2009) Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains. Ecol Appl 19:961–973

    Article  Google Scholar 

  • Nielsen K, Risgaard-Petersen N, Somod B, Rysgaard S, Bergo T (2001) Nitrogen and phosphorus retention estimated independently by flux measurements and dynamic modelling in the estuary, Randers Fjord, Denmark. Mar Ecol Progr Ser 219:25–40

    Article  Google Scholar 

  • O’Connor BL, Hondzo M, Dobraca D, LaPara TM, Finlay JC, Brezonik PL (2006) Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed. J Geophys Res Biogeosci 111:G04014

    Article  Google Scholar 

  • Oremland RS, Umberfer C, Culbertson CW, Smith RL (1984) Denitrification in San Francisco Bay intertidal sediments. Appl Environ Microbiol 47:1106–1112

    Google Scholar 

  • Oren A, Blackburn TH (1979) Estimation of sediment denitrification rates at insitu nitrate concentrations. Appl Environ Microbiol 37:174–176

    Google Scholar 

  • Pina-Ochoa E, Alvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130

    Article  Google Scholar 

  • Richardson WB, Strauss EA, Bartsch LA, Monroe EM, Cavanaugh JC, Vingum L, Soballe DM (2004) Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate flux. Can J Fish Aquat Sci 61:1102–1112

    Article  Google Scholar 

  • Rowe R, Todd R, Waide J (1977) Microtechnique for most-probable-number analysis. Appl Environ Microbiol 33:675–680

    Google Scholar 

  • Rudd JWM, Kelly CA, Schindler DW, Turner MA (1988) Disruption of the nitrogen-cycle in acidified lakes. Science 240:1515–1517

    Article  Google Scholar 

  • Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443:205–212

    Article  Google Scholar 

  • Seitzinger SP, Harrison JA, Bohlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  Google Scholar 

  • Sharma S, Szele Z, Schilling R, Munch JC, Schloter M (2006) Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol 72:2148–2154

    Article  Google Scholar 

  • Sickman JO, Melack JM, Stoddard JL (2002) Regional analysis of inorganic nitrogen yield and retention in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains. Biogeochemistry 57:341–374

    Article  Google Scholar 

  • Silvennoinen H, Liikanen A, Torssonen J, Stange CF, Martikainen PJ (2008) Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study. Biogeochemistry 91:105–116

    Article  Google Scholar 

  • Sotomayor D, Rice CW (1996) Denitrification in soil profiles beneath grassland and cultivated soils. Soil Sci Soc Am J 60:1822–1828

    Article  Google Scholar 

  • Staley TE, Griffin JB (1981) Simultaneous enumeration of denitrifying and nitrate reducing bacteria by a microtiter most-probable-number (MPN) procedure. Soil Biol Biochem 13:385–388

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen—its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. Amer Chemical Soc, Washington, DC, pp 223–284

    Chapter  Google Scholar 

  • Sundbäck K, Linares F, Larson F, Wulff A (2004) Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: the role of denitrification and microphytobenthos. Limnol Oceanogr 49:1095–1107

    Article  Google Scholar 

  • Tietema A (1998) Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manag 101:29–36

    Article  Google Scholar 

  • Tørseth K, Semb A (1998) Deposition of nitrogen and other major inorganic compounds in Norway, 1992–1996. Environ Pollut 102:299–304

    Article  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  Google Scholar 

  • Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006) Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manag 222:459–468

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Williams MW, Baron JS, Caine N, Sommerfeld R, Sanford R (1996) Nitrogen saturation in the Rocky Mountains. Environ Sci Technol 30:640–646

    Article  Google Scholar 

  • Wolfe AP, Cooke CA, Hobbs WO (2006) Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian arctic? Arct Antarct Alp Res 38:465–476

    Article  Google Scholar 

  • Wollheim WM, Vorosmarty CJ (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33:L06410. doi:06410.01029/02006GL025845

    Article  Google Scholar 

  • Wollheim WM, Vorosmarty CJ, Bouwman AF, Green P, Harrison J, Linder E, Peterson BJ, Seitzinger SP, Syvitski JPM (2008) Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach. Global Biogeochem Cycles 22:Gb2026. doi:2010.1029/2007GB002963

    Article  Google Scholar 

  • Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun 69:705–710

    Article  Google Scholar 

  • Yu KW, DeLaune RD, Boeckx P (2006) Direct measurement of denitrification activity in a Gulf coast freshwater marsh receiving diverted Mississippi River water. Chemosphere 65:2449–2455

    Article  Google Scholar 

  • Zak DR, Holmes WE, Tomlinson MJ, Pregitzer KS, Burton AJ (2006) Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3 deposition. Ecosystems 9:242–253

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marcia Kyle, Cathy Kochert, Erin Seybold, and Melanie Engstrom for their assistance with field and laboratory work. We are also grateful to the staff of the Mountain Research Station, Niwot Ridge Long Term Ecological Research Program, Rocky Mountain Biological Laboratory, Mountain Studies Institute, and Rocky Mountain National Park for their contributions in facilitating this study. Research funding was provided by National Science Foundation grant DEB-0516494 to JJE and graduate student research grants to MLM from the Mountain Studies Institute, the American Alpine Association, and the Society of Wetland Scientists. The suggestions of two anonymous referees greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. McCrackin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCrackin, M.L., Elser, J.J. Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA). Biogeochemistry 108, 39–54 (2012). https://doi.org/10.1007/s10533-011-9571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9571-5

Keywords

Navigation