Skip to main content
Log in

The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SIGR:

Substrate induced growth response

SIR:

Substrate induced respiration

Rh :

Heterotrophic respiration

Rs :

Soil respiration

Re :

Ecosystem respiration

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221. doi:10.1016/0038-0717(78)90099-8

    Article  Google Scholar 

  • Ausebel FM (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Black TA, Chen WJ, Barr AG, Arain MA, Chen Z, Nesic Z, Hogg EH, Neumann HH, Yang PC (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys Res Lett 27:1271–1274. doi:10.1029/1999GL011234

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  • Campbell GS, Norman JS (1998) Introduction to environmental biophysics. Springer, New York

    Google Scholar 

  • Colores GM, Schmidt SK, Fisk MC (1996) Estimating the biomass of microbial functional groups using rates of growth-related soil respiration. Soil Biol Biochem 28:1569–1577. doi:10.1016/S0038-0717(96)00253-2

    Article  Google Scholar 

  • Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219. doi:10.1016/j.tim.2006.03.006

    Article  Google Scholar 

  • Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11:167–181. doi:10.1111/j.1365-2486.2004.00878.x

    Article  Google Scholar 

  • Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF (2003) Scaling metabolism from organisms to ecosystems. Nature 423:639–642. doi:10.1038/nature01671

    Article  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi:10.1038/35009076

    Article  Google Scholar 

  • Goulden ML et al (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–216. doi:10.1126/science.279.5348.214

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.1023/A:1006244819642

    Article  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Google Scholar 

  • Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760. doi:10.1099/mic.0.26829-0

    Article  Google Scholar 

  • Kreft JU, Bonhoeffer S (2005) The evolution of groups of cooperating bacteria and the growth rate versus yield trade-off. Microbiology 151:637–641. doi:10.1099/mic.0.27415-0

    Article  Google Scholar 

  • Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59:418–427. doi:10.1111/j.1574-6941.2006.00240.x

    Article  Google Scholar 

  • Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113:406–414. doi:10.1007/s004420050393

    Article  Google Scholar 

  • Lipson DA, Schmidt SK (2004) Seasonal changes in an alpine soil bacterial community. Appl Environ Microbiol 70:2867–2879. doi:10.1128/AEM.70.5.2867-2879.2004

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and N availability in an alpine ecosystem. Ecology 80:1623–1631

    Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline of microbial biomass in an alpine soil. Soil Biol Biochem 32:441–448. doi:10.1016/S0038-0717(99)00068-1

    Article  Google Scholar 

  • Lipson DA, Schadt CW, Monson RK, Schmidt SK (2002) Changes in microbial community structure and function following snow melt in an alpine soil. Microb Ecol 43:307–314. doi:10.1007/s00248-001-1057-x

    Article  Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity and diversity in a chaparral ecosystem. Appl Environ Microbiol 71:8573–8580. doi:10.1128/AEM.71.12.8573-8580.2005

    Article  Google Scholar 

  • Luo YQ, Wan SQ, Hui DF, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625. doi:10.1038/35098065

    Article  Google Scholar 

  • MacLean RC, Gudelj I (2006) Resource competition and social conflict in experimental populations of yeast. Nature 441:498–501. doi:10.1038/nature04624

    Article  Google Scholar 

  • Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682. doi:10.1128/AEM.68.8.3673-3682.2002

    Article  Google Scholar 

  • Meir P, Cox P, Grace J (2006) The influence of terrestrial ecosystems on climate. Trends Ecol Evol 21:254–260. doi:10.1016/j.tree.2006.03.005

    Article  Google Scholar 

  • Millner PD, Mulbry WW, Reynolds SL, Patterson CA (1998) A taxon-specific oligonucleotide probe for temperate zone soil isolates of Glomus mosseae. Mycorrhiza 8:19–27. doi:10.1007/s005720050206

    Article  Google Scholar 

  • Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8:459–478. doi:10.1046/j.1365-2486.2002.00480.x

    Article  Google Scholar 

  • Monson RK, Sparks JS, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146:130–147. doi:10.1007/s00442-005-0169-2

    Article  Google Scholar 

  • Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006a) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cycles 20:GB3030. doi:10.1029/2005GB002684

    Article  Google Scholar 

  • Monson RK, Lipson DA, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006b) Forest soil respiration controlled by winter climate variation and microbial community composition. Nature 439:711–714. doi:10.1038/nature04555

    Article  Google Scholar 

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western north America. Bull Am Meteorol Soc 86:39. doi:10.1175/BAMS-86-1-39

    Article  Google Scholar 

  • Pasteur L (1861) Animalcules infusoires vivant sans gaz oxygene libre et determinant des fermentations. Compt Rend Acad Sci (Paris) 52:344–347

    Google Scholar 

  • Pfeiffer T, Bonhoeffer S (2004) Evolution of cross-feeding in microbial populations. Am Nat 163:E126–E135. doi:10.1086/383593

    Article  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507. doi:10.1126/science.1058079

    Article  Google Scholar 

  • Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–68. doi:10.1007/s00442-006-0565-2

    Article  Google Scholar 

  • Sakamoto K, Oba Y (1994) Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass. Biol Fertil Soils 17:39–44. doi:10.1007/BF00418670

    Article  Google Scholar 

  • Schmidt SK (1992) A substrate-induced growth-response (SIGR) method for estimating the biomass of microbial functional groups in soil and aquatic systems. FEMS Microbiol Ecol 101:197–206

    Article  Google Scholar 

  • Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol Biochem 35:525–534. doi:10.1016/S0038-0717(03)00007-5

    Article  Google Scholar 

  • Scott-Denton LE, Rosenstiel T, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Change Biol 12:205–216. doi:10.1111/j.1365-2486.2005.01064.x

    Article  Google Scholar 

  • Sorokin DY, Banciu H, Loosdrecht Mv, Kuenen JG (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203

    Google Scholar 

  • Stulke J, Wolfgang H (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201. doi:10.1016/S1369-5274(99)80034-4

    Article  Google Scholar 

  • Subke J-A, Inglima I, Cotrufo F (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943. doi:10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245. doi:10.1016/S1369-5274(02)00324-7

    Article  Google Scholar 

  • Velicer GJ, Lenski RE (1999) Evolutionary tradeoffs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80:1168–1179

    Article  Google Scholar 

  • Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. Trends Ecol Evol 21:288–295. doi:10.1016/j.tree.2006.04.003

    Article  Google Scholar 

  • Zobitz JM, Moore D, Sacks WJ, Monson RK, Bowling DR, Schimel DS (2008) Integration of process-based soil respiration models with whole ecosystem CO2 measurements. Ecosystems (NY, Print) 11:250–259. doi:10.1007/s10021-007-9120-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Roshan Ashoor, Michelle Blair, Laura Scott-Denton and Richard Wilson for field and laboratory assistance, and an anonymous reviewer for detailed comments. Funding for this project was provided by the U.S. National Science Foundation and the Department of Energy. Logistical support and climate data was provided by the Niwot Ridge LTER program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lipson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipson, D.A., Monson, R.K., Schmidt, S.K. et al. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95, 23–35 (2009). https://doi.org/10.1007/s10533-008-9252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9252-1

Keywords

Navigation