Skip to main content
Log in

Phosphorus Retention at the Redox Interface of Peatlands Adjacent to Surface Waters in Northeast Germany

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

It is demanded currently in public discussions to rewet peatlands and re-establish their function as nutrient sinks. But due to high phosphorus (P) concentrations in the pore water of rewetted peatlands (40–420 μM) it is hypothesized that they can act as a surplus P source for adjacent surface waters and consequently support the eutrophication of such waters. Our detailed investigations of processes at the redox interface in four fens with different geochemical character show the dependence of P retention from the chemistry of the pore water. The precipitation of Fe(III) oxyhydroxide led to high retention of phosphorus and other substances such as DOC and sulphate in the eutrophic fens. When molar Fe/P ratios were larger than about 3 the initially high P concentrations in the anaerobic pore water (20–210 μM) decreased to concentrations below 1 μM under aerobic conditions. Thus, after rewetting high pore water concentrations of P do not automatically result in an increased P load to adjacent surface waters compared to pre-rewetting conditions. An enhanced P export to adjacent surface waters from eutrophic fens can be expected when the Fe/P ratio is smaller than 3 in the anaerobic pore water. In our investigations of natural, oligotrophic to mesotrophic fens the precipitation of Fe(III) oxyhydroxide was inhibited by the formation of stable dissolved Fe ∼ humic complexes. P retention in these fens was only related to the DOC concentrations at the redox interface, so that lower DOC concentrations concurred with higher P retention. The P equilibrium concentrations in an aerobic environment can be higher than that of eutrophic fens with Fe/P ratios larger than about 3 in the anaerobic pore water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Buffle J. 1988. Complexation properties of homologous comlexants and choice of measuring methods. In: Complexation Reactions in Aquatic Systems: an Analytical Approach. Ellis Horwood, Chichester, UK, pp. 304–383.

  • J. Buffle R.R. De Vitre D. Perret G.G. Leppard (1989) ArticleTitlePhysico-chemical characteristics of a colloidal iron phosphate species formed at the oxic-anoxic interface of a eutrophic lake Geochim. Cosmochim. Acta 53 399–408 Occurrence Handle10.1016/0016-7037(89)90391-8

    Article  Google Scholar 

  • J. Dolfing W.J. Chardon J. Japenga (1999) ArticleTitleAssociation between colloidal iron, aluminium, phosphorus, and humic acids Soil Science 164 171–179 Occurrence Handle10.1097/00010694-199903000-00003

    Article  Google Scholar 

  • Driescher E., Gelbrecht J. 1999. Investigation of springs – a means to estimate the geogenic phosphorus background of surface waters. Berlin, ISSN-Nr. 1432–508X Berichte des IGB, Heft 8, pp. 107–118.

  • J. Gelbrecht D. Koppisch (2001) Phosphor-Umsetzungsprozesse M. Succow H. Joosten (Eds) Landschaftsökologische Moorkunde Schweizerbart Stuttgart 24–26

    Google Scholar 

  • Gelbrecht J., Lengsfeld H. 1998. Phosphorus in fens adjacent to surface waters. Berlin, ISSN-Nr. 1432-508X Berichte des IGB, Heft 5. pp. 94–100.

  • Gelbrecht J., Driescher E., Exner H.J., Köhler J., (1999). Input, content and dynamics of phosphorus in the River Schlaube basin (SE Brandenburg). Berlin, ISSN-Nr. 1432-508X Berichte des IGB, Heft 9, pp. 143–170.

  • S. Goldberg G. Sposito (1984) ArticleTitleA chemical model of phosphate adsorption by soils: I. Reference oxide minerals Soil Sci. Soc. Am. J. 48 772–778

    Google Scholar 

  • S.A. Huber F.H. Frimmel (1996) ArticleTitleSize-exclusion-chromatography with organic carbon detection (LCOCD): A fast and a reliable method for characterisation of hydrophilic organic matter in natural waters Vom Wasser 86 277–290

    Google Scholar 

  • R.H. Hesslein (1976) ArticleTitleAn in situ sampler for close interval porewater studies Limnol. Oceanogr. 21 912–914

    Google Scholar 

  • H.S. Jensen P. Kristensen E. Jeppesen A. Skytthe (1992) ArticleTitleIron: phosphorus ratio in surface sediments in shallow lakes Hydrobiology 235/236 731–743 Occurrence Handle10.1007/BF00026261

    Article  Google Scholar 

  • M. Kawashima Y. Tainaka T. Hori M. Koyama T. Takamatsu (1986) ArticleTitlePhosphate adsorption onto hydrous manganese(IV)oxide in the presence of divalent cations Wat. Res. 20 IssueID4 471–475 Occurrence Handle10.1016/0043-1354(86)90195-8

    Article  Google Scholar 

  • L. Landgraf (1998) ArticleTitleLandschaftsökologische Untersuchungen an einem wiedervernässten Niedermoor an der Nuthe-Nieplitz-Niederung. Bd. 18 Studien und Tagungsberichte des LUA Brandenburg 18 1–120

    Google Scholar 

  • D.P.H. Laxen (1985) ArticleTitleTrace metal adsorption/coprecipitation on hydrous ferric oxide under realistic conditions. The role of humic substances Wat. Res. 19 1229–1236 Occurrence Handle10.1016/0043-1354(85)90175-7

    Article  Google Scholar 

  • L. Lijklema (1980) ArticleTitleInteraction of orthophosphate with iron(III) and aluminium hydroxides Am. Chem Soc. 14 IssueID5 537–541

    Google Scholar 

  • Mitsch J.W., Gosselink J.W., 1993. Biogeochemistry of wetlands. In: Wetlands Van Nostrand Reinhold, New York, pp. 114–147.

  • S. Peiffer K. Walton-Day D.L. Macalady (1999) ArticleTitleThe interaction of natural organic matter with iron in a wetland (Tennessee Park, Colorado) receiving acid mine drainage Aquat. Geochem. 5 207–223 Occurrence Handle10.1023/A:1009617925959

    Article  Google Scholar 

  • E.E. Roden J.W. Edmonds (1997) ArticleTitlePhosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III)oxide reduction versus iron-sulfide formation Arch. Hydrobiol. 139 347–378

    Google Scholar 

  • A. Sachse D. Babenzien G. Ginzel J. Gelbrecht C.E.W. Steinberg (2001) ArticleTitleCharacterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen Biogeochemistry 54 279–296 Occurrence Handle10.1023/A:1010649227510

    Article  Google Scholar 

  • P. Steinmann W. Shotyk (1996) ArticleTitleSampling anoxic porewaters in peatlands using ’peeper’ for in situ-filtration Fresh. J. Anal. Chem. 354 709–713

    Google Scholar 

  • P. Steinmann W. Shotyk (1997) ArticleTitleChemical composition, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs Geochim. Cosmochim. Acta 61 1143–1163 Occurrence Handle10.1016/S0016-7037(96)00401-2

    Article  Google Scholar 

  • E. Tipping (1980) ArticleTitleThe adsorption of aquatic humic substances by iron oxides Geochim. Cosmochim. Acta 45 191–199 Occurrence Handle10.1016/0016-7037(81)90162-9

    Article  Google Scholar 

  • W. Yao F.J. Millero (1996) ArticleTitleAdsorption of phosphate on manganese dioxide in seawater Environ. Sci. Technol. 30 536–541 Occurrence Handle10.1021/es950290x

    Article  Google Scholar 

  • Zeitz J., 1997. Zur Geochemie von Mooren. In: Matschulat, Tobschall and Voigt (eds) Geochemie Springer Verlag, Berlin, pp. 75–94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gelbrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zak, D., Gelbrecht, J. & Steinberg, C.E.W. Phosphorus Retention at the Redox Interface of Peatlands Adjacent to Surface Waters in Northeast Germany. Biogeochemistry 70, 357–368 (2004). https://doi.org/10.1007/s10533-003-0895-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-003-0895-7

Keywords

Navigation