Skip to main content

Advertisement

Log in

Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization

Biodegradation Aims and scope Submit manuscript

Abstract

Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achenbach L, Bender K, Sun Y, Coates J (2006) The biochemistry and genetics of microbial perchlorate reduction. In: Perchlorate environmental occurrence, interactions and treatment. Springer, New York

  • Bae W, Rittmann B (1996) A structural model of dual-limitation kinetics. Biotechnol Bioeng 49:683–689

    Article  PubMed  CAS  Google Scholar 

  • Brenner K, You L, Arnold F (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489

    Article  PubMed  CAS  Google Scholar 

  • Bruce RA, Achenbach L, Coates J (1999) Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1(4):319–329

    Article  PubMed  CAS  Google Scholar 

  • Coates J, Michaelidou U, O’Connor S, Bruce R, Achenbach L (2000) The diverse microbiology of (per)chlorate reduction. In: Perchlorate in the environment. Kluwer/Plenum, New York

  • Emborg C, Jepsen PK, Biedermann K (1989) Two-level factorial screening of new plasmid/strain combinations for production of recombinant-DNA products. Biotechnol Bioeng 33(11):1393–1399. doi:10.1002/bit.260331105

    Article  PubMed  CAS  Google Scholar 

  • Herman D, Frankenberger W (1998) Microbial mediated reduction of perchlorate in groundwater. J Environ Qual 27:750–754

    Article  CAS  Google Scholar 

  • Kambam P, Eriksen D, Lajoie J, Sayut D, Sun L (2008) Design and mathematical modeling of a synthetic symbiotic ecosystem. IET Syst Biol 2:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kucharzyk K, Crawford R, Paszczynski A, Hess T (2010) A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin. J Microbiol Methods 81:26–32

    Article  PubMed  CAS  Google Scholar 

  • Kucharzyk KH, Crawford RL, Paszczynski AJ, Soule T, Hess TF (2012) Maximizing microbial degradation of perchlorate using a genetic algorithm: media optimization. J Biotechnol 157(1):189–197. doi:10.1016/j.jbiotec.2011.10.011

    Article  PubMed  CAS  Google Scholar 

  • Liu Y (2007) Overview of some theoretical approaches for derivation of the Monod equation. Appl Microbiol Biotechnol 73:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zachara J (2001) Uncertainties of Monod kinetic parameters nonlinearly estimated from batch experiments. Environ Sci Technol 35:133–141

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zachara J, Gorby Y, Szecsody J, Brown C (2001) Microbial reduction of Fe(III) and sorption/precipitation of Fe(II) on bacteria, S. putrefaciens CN32. Environ Sci Technol 35:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Lin Y, Yang S (2003) A thermodynamic interpretation of the Monod equation. Curr Microbiol 46:233–234

    Article  PubMed  CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–393

    Article  CAS  Google Scholar 

  • Rittmann B, McCarty P (2001) Environmental biotechnology: principles and applications. McGraw Hill, New York

    Google Scholar 

  • Rittmann B, VanBriesen J (1996) Microbiological processes in reactive modeling. Rev Mineral 34:311–334

    CAS  Google Scholar 

  • Robinson J, Tiedje J (1983) Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl Environ Microbiol 45:1453–1458

    PubMed  CAS  Google Scholar 

  • Scow K, Merica R, Alexander M (1990) Kinetic analysis of enhanced biodegradation of carbofuran. J Agric Food Chem 38:908–912

    Article  CAS  Google Scholar 

  • Simkins S, Alexander M (1984) Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47:1299–1306

    PubMed  CAS  Google Scholar 

  • Simkins S, Alexander M (1985) Nonlinear estimation of the parameters of Monod kinetics that best describe mineralization of several substrate concentrations by dissimilar bacterial densities. Appl Environ Microbiol 50:816–824

    PubMed  CAS  Google Scholar 

  • Spear J, Figueroa L, Honeyman B (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ Sci Technol 33:2667–2675

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton F (1991) Wastewater engineering. McGraw Hill, New York

    Google Scholar 

  • Vandecasteele F, Hess T, Crawford R (2003) Constructing microbial consortia with optimal biomass production using a genetic algorithm. Paper presented at the genetic and evolutionary computation conference: late-breaking papers

  • Vandecasteele F, Hess T, Crawford R (2004) Constructing Microbial Consortia with minimal growth using a genetic algorithm. Paper presented at the EvoBIO2004, 2nd European workshop on evolutionary bioinformatics. Springer, Berlin

  • Wallace W, Ward T, Breen A, Attaway H (1996) Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J Ind Microbiol 16:68–72

    Article  CAS  Google Scholar 

  • Wang Y, Shen H (1997) Modeling Cr(VI) reduction by pure bacterial cultures. Water Res 31:727–732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by the United States Army Corps of Engineers, Humphreys Engineering Center Support Activity under Contract No. W912HQ-07-C-0014. Views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official department of defense position decision unless so designated by other official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Hess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharzyk, K.H., Soule, T. & Hess, T.F. Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization. Biodegradation 24, 583–596 (2013). https://doi.org/10.1007/s10532-012-9602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9602-5

Keywords

Navigation