Skip to main content

Advertisement

Log in

Biological degradation and solubilisation of coal

  • Review Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This review focuses on ligninolytic fungi, soil bacteria, plants and root exudates in the degradation and solubilisation of low grade and waste coal and the interaction between these mutualistic biocatalysts. Coal represents a considerable portion of the total global fossil fuel reserve and continued demand for, and supply of this resource generates vast quantities of spoil and low grade waste. Large scale bioremediation technologies for the beneficiation of waste coal have unfortunately not yet been realised despite the many discoveries of microorganisms capable of lignite, lignin, and humic acid breakdown. Even so, solubilisation and depolymerization of low grade coal appears to involve either ligninolytic enzyme action or the production of alkaline substances or both. While the precise mechanism of coal biosolubilisation is unclear, a model for the phyto-biodegradation of low rank coal by mutualistic interaction between ligninolytic microorganisms and higher plants is proposed. Based on accumulated evidence this model suggests that solubilisation and degradation of lignite and waste coals commences upon plant root exudate and ligninolytic microorganism interaction, which is mutualistic, and includes soil bacteria and both mycorrhizal and non-mycorrhizal fungi. It is envisaged that this model and its further elaboration will aid in the development of functional technologies for commercial bioremediation of coal mine spoils, contribute to soil formation, and the overall biogeochemistry of organic carbon in the global ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Achi OK (1994) Growth and coal-solubilizing activity of Penicillium simplicissimum on coal-related aromatic compounds. Bioresource Technol 48:53–57

    Article  CAS  Google Scholar 

  • Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107

    Article  PubMed  CAS  Google Scholar 

  • Almendros G, Dorado J (1999) Molecular characteristics related to the biodegradability of humic acid preparations. Eur J Soil Sci 50:227–236

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11:94–105

    Article  PubMed  CAS  Google Scholar 

  • Boersma FGH, Warmink JA, Andreote FA, van Elsas JD (2009) Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies. Appl Environ Microbiol 75:1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Brunetti G, Plaza C, Clapp CE, Senesi N (2007) Compositional and functional features of humic acids from organic amendments and amended soils in Minnesota, USA. Soil Biol Biochem 39:1355–1365

    Article  CAS  Google Scholar 

  • Campitelli PA, Velasco MI, Ceppi SB (2006) Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta 69:1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Carlson CC, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:227–247

    Article  CAS  Google Scholar 

  • Catcheside DEA, Ralph JP (1999) Biological processing of coal. Appl Microbiol Biotechnol 52:16–24

    Article  CAS  Google Scholar 

  • Coates JD, Cole KA, Chakraborty R, O’Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 68:2445–2452

    Article  PubMed  CAS  Google Scholar 

  • Cohen MS, Gabriele PD (1982) Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl Environ Microbiol 44:23–27

    PubMed  CAS  Google Scholar 

  • Cohen MS, Feldmann KA, Brown CS, Grey ET (1990) Isolation and identification of the coal solubilizing agent produced by Trametes versicolor. Appl Environ Microbiol 56:3285–3290

    PubMed  CAS  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  PubMed  CAS  Google Scholar 

  • Crawford D, Pometto A III, Crawford R (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45:898–904

    PubMed  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Del Rio JC, González-Villa FM, Verdejo T (1994) Characterization of humic acids from low rank coals by 13C-NMR and pyrolysis-methylation. Formation of benzenecarboxylic acid moieties during the coalification process. Org Geochem 22:885–891

    Article  CAS  Google Scholar 

  • Demirbas A, Kar Y, Deveci H (2006) Humic substances and nitrogen-containing compounds from low rank brown coals. Energy Sources Part A 28:341–351

    Article  CAS  Google Scholar 

  • Ekka NJ, Behera N (2010) A study of the mycorrhizal association with vegetation on coal mines spoil. Bioscan 5:369–372

    Google Scholar 

  • el Zahar Haichar F, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  Google Scholar 

  • Fakoussa RM (1988) Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal. Resour Conser Recycl 1:251–260

    Article  CAS  Google Scholar 

  • Fakoussa RM, Frost PJ (1999) In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl Microbiol Biotechnol 52:60–65

    Article  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  PubMed  CAS  Google Scholar 

  • Fong SS, Seng L, Chong WN, Asing J, Faizal M, Nor M, Satirawaty M, Pauzan A (2006) Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. J Braz Chem Soc 17:582–587

    Article  CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Romine MF, Shi T (1999) Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. J Ind Microbiol Biotechnol 23:273–283

    Article  PubMed  CAS  Google Scholar 

  • Gotz GKE, Fakoussa RM (1999) Fungal biosolubilization of Rhenish brown coal monitored by Curie point pyrolysis/gas chromatography/mass spectrometry using tetraethylammonium hydroxide. Appl Microbiol Biotechnol 52:41–48

    Article  PubMed  CAS  Google Scholar 

  • Gramss G, Rudeschko O (1998) Activities of oxidoreductase enzymes in tissue extracts and sterile root exudates of three crop plants, and some properties of the peroxidase component. New Phytol 138:401–409

    Article  CAS  Google Scholar 

  • Grinhut T, Hadar Y, Chen Y (2007) Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol Rev 21:179–189

    Article  Google Scholar 

  • Gutierrez-Zamora M-L, Manefield M (2010) An appraisal of methods for linking environmental processes to specific microbial taxa. Rev Environ Sci Biotechnol 9:153–185

    Article  Google Scholar 

  • Hammel KE (1996) Extracellular free radical biochemistry of ligninolytic fungi. New J Chem 20:195–198

    CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18

    Article  CAS  Google Scholar 

  • Harvey PJ, Thurston CF (2001) The biochemistry of ligninolytic fungi. In: Gadd GM (ed) Fungi in bioremediation. British Mycological Society Symposia, pp 27–51

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal. Org Geochem 4:9–18

    Article  CAS  Google Scholar 

  • Hayatsu R, Winans RE, McBeth RL, Scott RG, Moore LP, Studier MH (1979) Lignin like polymers in coals. Nature 278:41–43

    Article  CAS  Google Scholar 

  • Henning K, Steffes H, Fakoussa RM (1997) Effects on the molecular weight distribution of coal derived humic acids studied by ultrafiltration. Fuel Process Technol 52:225–237

    Article  CAS  Google Scholar 

  • Hodek W (1994) The structure of coal in regard of microbiological degradation. Fuel Process Technol 40:369–378

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbiol Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hofrichter M, Fakoussa R (2001) Microbial degradation and modification of coal. In: Steinbuchel A, Hofrichter M (eds) Lignin, humic substances and coal, vol 1. Wiley–VCH, Weinheim, pp 393–427

    Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. 2. The ligninolytic enzymes of the coal-humic acid depolymerizing fungus Nematoloma forwardii b19. Fuel Energy Abstr 38:296

    Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1997) Fungal attack on coal II. Solubilization of low-rank coal by filamentous fungi. Fuel Process Technol 52:55–64

    Article  CAS  Google Scholar 

  • Hofrichter M, Ziegenhagen D, Sorge S, Ullrich R, Bublitz F, Fritsche W (1999) Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system. Appl Microbiol Biotechnol 52:78–84

    Article  PubMed  CAS  Google Scholar 

  • Hölker U, Höfer M (2002) Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor. Biotechnol Lett 24:1643–1645

    Article  Google Scholar 

  • Hölker U, Ludwig S, Scheel T, Höfer M (1999) Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum. Appl Microbiol Biotechnol 52:57–59

    Article  PubMed  Google Scholar 

  • Hölker U, Schmiers H, Grobe S, Winkelhofer M, Polsakiewicz M, Ludwig S, Dohse J, Höfer M (2002) Solubilization of low-rank coal by Trichoderma atroviride: evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J Ind Microbiol Biotechnol 28:207–212

    Article  PubMed  Google Scholar 

  • Igbinigie EE, Aktins S, van Breugel Y, van Dyke S, Davies-Coleman MT, Rose PD (2008) Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnol J 3:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Igbinigie EE, Mutambanengwe CZ, Rose PD (2010) Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere. Biotechnol J 5:292–303

    Article  PubMed  CAS  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596

    Article  PubMed  CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008a) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technol 99:4732–4741

    Article  CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008b) Restoration of fly ash dump through biological interventions. Environ Monit Assess 139:355–365

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Nishikawa S, Murayama A, Yamasaki M, Morohoshi N, Haraguchi T (1988) The metabolism of biphenyl structures in lignin by the soil bacterium Pseudomonas paucimobilis Syk-6. FEBS Lett 233:129–133

    Article  CAS  Google Scholar 

  • Keck A, Conradt D, Mahler A, Stolz A, Mattes R, Klein J (2006) Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152:1929–1940

    Article  PubMed  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  PubMed  CAS  Google Scholar 

  • Kim S-J, Kwon KK (2010) Marine, hydrocarbon degrading alphaproteobacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1707–1714

    Chapter  Google Scholar 

  • Klein J, Catcheside DEA, Fakoussa R, Gazso L, Fritsche W, Höfer M, Laborda F, Margarit I, Rehm H-J, Reich-Walber M, Sand W, Schacht S, Schmiers H, Setti L, Steinbüchel A (1999) Biological processing of fossil fuels—résumé of the bioconversion session of ICCS 97. Appl Microbiol Biotechnol 52:2–15

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Organic Geochem 31:609–625

    Article  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. MPMI 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Kulikova NA, Stepanova EV, Koroleva OV (2005) Mitigating Activity of humic substances: direct influence on biota. In: Perminova IV, Hatfield K, Hertkorn N (eds) Use of humic substances to remediate polluted environments: from theory to practice. NATO Science Series: IV. Earth Environ Sci 52:285–309

  • Laborda F, Monistrol IF, Luna N, Fernández M (1999) Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl Microbiol Biotechnol 52:49–56

    Article  PubMed  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  PubMed  CAS  Google Scholar 

  • Leys NM, Ryngaert A, Bastiaens L, Verstraete W, Top EM, Springael D (2004) Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955

    Article  PubMed  CAS  Google Scholar 

  • Machnikowska H, Pawelec K, Podgórska A (2002) Microbial degradation of low rank coals. Fuel Process Technol 77(78):17–23

    Article  Google Scholar 

  • Maka A, Srivastava VJ, Kilbane JJ II, Akin C (1989) Biological solubilisation of untreated North Dakota lignite by a mixed bacterial and bacterial/fungal culture. Appl Biochem Biotechnol 20(21):715–729

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marzec A (2002) Towards an understanding of the coal structure: a review. Fuel Process Technol 77(78):25–32

    Article  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Mester T, Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeter Biodeg 46:51–59

    Article  CAS  Google Scholar 

  • Millard P, Singh BK (2010) Does grassland vegetation drive soil microbial diversity? Nutr Cycl Agroecosyst 88:147–158

    Article  Google Scholar 

  • Mukasa-Mugerwa TT, Dames JF, Rose PD (2011) The role of a plant/fungal consortium in the degradation of bituminous hard coal. Biodegradation 22:129–141

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2009) Reclamation of mine spoils with vesicular arbuscular mycorrhiza (VAM) fungi—a review. Environ Ecol 27:642–646

    Google Scholar 

  • Novotný C, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  • Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Esser K, Lemke PA (eds) The mycota II. Genetics and biotechnology. Springer, Berlin, pp 287–302

    Chapter  Google Scholar 

  • Orth BA, Royse D, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  PubMed  CAS  Google Scholar 

  • Penã-Castro JM, Barrera-Figueroa BE, Fernández-Linares L, Ruiz-Medrano R, Xoconostle-Cázares B (2006) Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Sci 170:724–731

    Article  CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, de la Rubia T, Martinez T (2002) Biodegrdation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Polman JK, Stoner DL, Delezene-Briggs KM (1994) Bioconversion of coal, lignin and dimethoxybenzyl alcohol by Penicillium citrinum. J Ind Microbiol 13:292–299

    Article  CAS  Google Scholar 

  • Quigley DR, Wey JE, Breckenridge CR, Stoner DL (1988) The influence of pH on biological solubilisation of oxidized, low-rank coal. Resour Conserv Recycl 1:163–174

    Article  CAS  Google Scholar 

  • Quigley DR, Ward B, Crawford DL, Hatcher HJ, Dugan PR (1989) Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl Biochem Biotechnol 20(21):753–763

    Article  Google Scholar 

  • Ralph JP, Catcheside DEA (1996) Size-exclusion chromatography of solubilised low-rank coal. J Chromatogr A 724:97–105

    Article  CAS  Google Scholar 

  • Ralph JP, Catcheside DEA (1997) Transformations of low rank coal by Phanerochaete chrysosporium and other wood-rot fungi. Fuel Process Technol 52:79–93

    Article  CAS  Google Scholar 

  • Ralph JP, Catcheside DEA (1999) Transformation of macromolecules from a brown-coal by lignin peroxidase. Appl Microb Biotechnol 52:70–77

    Article  CAS  Google Scholar 

  • Ram LC, Srivastava NK, Jha SK, Sinha AK, Masto RE, Selvi VA (2007) Management of lignite fly ash for improving soil fertility and crop productivity. Environ Manag 40:438–452

    Article  Google Scholar 

  • Ramachandra M, Crawford D, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    PubMed  CAS  Google Scholar 

  • Ramachandran TV, Lalit BY, Mishra UC (1990) Modifications in natural radioactivity content of soil samples around thermal power stations in India. Indian J Environ Health 32:13–19

    Google Scholar 

  • Roberts JN, Singh R, Grigg JC, Murphy MEP, Bugg TDH, Eltis Ld (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry 50:5108–5119

    Article  PubMed  CAS  Google Scholar 

  • Ronchel M, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    Article  CAS  Google Scholar 

  • Shukla SK, Singh K, Singh B, Gautam NN (2011) Biomass productivity and nutrient availability of Cyanodon dactylon (L.) Pers. growing on soils of different sodicity stress. Biomass Bioenergy 35:3440–3447

    Article  CAS  Google Scholar 

  • Singh BK, Nunan N, Ridgway KP, McNicol J, Young JPW, Daniell TJ, Prosser JI, Millard P (2008) Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environ Microbiol 10:534–541

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing Basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    Article  PubMed  CAS  Google Scholar 

  • Stout SA, Boon JJ, Spackman W (1988) Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods. Geochim Cosmochim Acta 52:405–414

    Article  CAS  Google Scholar 

  • Strandberg GW, Lewis SN (1987) The Solubilization of coal by an extracellular product from Streptomyces setonii 75Vi2. J Ind Microbiol 1:371–375

    Article  CAS  Google Scholar 

  • Tao XX, Chen H, Shi KY, Lv ZP (2010) Identification and biological characteristics of a newly isolated fungus Hypocrea lixii and its role in lignite bioconversion. Afr J Microbiol Res 4:1842–1847

    CAS  Google Scholar 

  • Temp U, Meyrahn H, Eggert C (1999) Extracellular phenol oxidase patterns during depolymerization of low-rank coal by three basidiomycetes. Biotechnol Lett 21:281–287

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Torzilli AP, Isbister JD (1994) Comparison of coal solubilisation by bacteria and fungi. Biodegradation 5:55–62

    CAS  Google Scholar 

  • Tripathi RC, Jain VK, Tripathi PSM (2010) Fungal biosolubilization of Neyveli lignite Into humic acid. Energy Sources A 32:72–82

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  PubMed  CAS  Google Scholar 

  • Vacca DJ, Bleam WF, Hickey WJ (2005) Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71:3797–3805

    Article  PubMed  CAS  Google Scholar 

  • Valdrighi MM, Pera A, Agnolucci M, Frassinetti S, Lunardi D, Vallini G (1996) Effects of compost derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)— soil system: comparative study. Agric Ecosys Environ 58:133–144

    Article  Google Scholar 

  • Van Trump JI, Wrighton KC, Thrash JC, Weber KA, Andersen GL, Coates JD (2011) Humic acid-oxidizing, nitrate-reducing bacteria in agricultural soils. mBio 2(4):e00044-11. doi:10.1128/mBio.00044-11

  • Vicuna R (1988) Bacterial degradation of lignin. Enzyme Microb Technol 10:646–655

    Article  CAS  Google Scholar 

  • Visser SA (1985a) Physiological action of humic substances on microbial cells. Soil Biol Biochem 17:457–462

    Article  CAS  Google Scholar 

  • Visser SA (1985b) Effects of humic acids on numbers and activities of micro-organisms within physiological groups. Org Geochem 8:81–85

    Article  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) Depolymerization of lignin by manganese peroxidase. Biochem Biophys Res Commun 176:269–275

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky D, LaDow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere 69:500–506

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Tao X, Shi K (2011) The role of surfactants in coal bio-solubilisation. Fuel Process Technol 92:1554–1559

    Article  CAS  Google Scholar 

  • Yuan H-L, Toyota K, Kimura M (1995) Observation with scanning electron microscope of microbial succession on lignite along with weathering. Bull Jpn Soc Microbiol Ecol 10:53–58

    Article  Google Scholar 

  • Yuan H-L, Yang JS, Wang FQ, Chen WX (2006) Degradation and solubilization of Chinese lignite by Penicillium sp. P6. Appl Biochem Microbiol 42:52–55

    Article  CAS  Google Scholar 

  • Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SY (2004) Biotransformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol Biochem 36:359–369

    Article  CAS  Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support provided by Anglo Thermal Coal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Keith Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekhohola, L.M., Igbinigie, E.E. & Cowan, A.K. Biological degradation and solubilisation of coal. Biodegradation 24, 305–318 (2013). https://doi.org/10.1007/s10532-012-9594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9594-1

Keywords

Navigation