Skip to main content
Log in

Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akarsubasi AT, Eyice O, Miskin I, Head IM, Curtis TP (2009) Effect of sludge age on the bacterial diversity of bench scale sequencing batch reactors. Environ Sci Technol 43(8):2950–2956. doi:10.1021/es8026488

    Article  PubMed  Google Scholar 

  • Bailey MJ, Lilley AK, Thompson IP, Rainey PB, Ellis RJ (1995) Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol Ecol 4:755–763

    Article  PubMed  CAS  Google Scholar 

  • Brevett CAS, Sumpter KB, Nickol RG (2009) Kinetics of the degradation of sulfur mustard on ambient and moist concrete. J Hazard Mater 162(1):281–291. doi:10.1016/j.jhazmat.2008.05.033

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino PA (2011) DESI-MS/MS of chemical warfare agents and related compounds. In: Banoub J (ed) Detection of biological agents for the prevention of bioterrorism. NATO science for peace and security series A—chemistry and biology, pp 163–179. doi:10.1007/978-90-481-9815-3_11

  • Dudley BF, Brimfield AA, Winston GW (2000) Oxidation of thiodiglycol (2,2′-thiobis-ethanol) by alcohol dehydrogenase: comparison of human isoenzymes. J Biochem Mol Toxicol 14:244–251

    Article  PubMed  CAS  Google Scholar 

  • Ermakova IT, Starovoitov II, Tikhonova EB, Slepen’kin AV, Kashparov KI, Boronin AM (2002) Bioutilization of thiodiglycol, the product of mustard detoxification: isolation of degrading strains, study of biodegradation process and metabolic pathways. Process Biochem 38:31–39

    Article  CAS  Google Scholar 

  • Ermakova IT, Safrina NS, Starovoitov II, Lyubun YV, Shcherbakov AA, Makarov OE, Kosterin PV, Boronin AM (2005) Microbial degradation of the detoxification products of mustard from the Russian chemical weapons stockpile. J Chem Technol Biotechnol 80(5):495–501. doi:10.1002/jctb.1235

    Article  CAS  Google Scholar 

  • García-Ruiz V, Martín-Otero LE, Puyet A (2002) Transformation of thiodiglycol by resting cells of Alcaligenes xylosoxydans PGH10. Biotechnol Prog 18:252–256

    Article  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:6961–6968

    Google Scholar 

  • Hackett CA, Griffiths BS (1997) Statistical analysis of the time-course of Biolog substrate utilization. J Microbiol Methods 30:63–69

    Article  CAS  Google Scholar 

  • Harvey SP, Szafraniec LL, Beaudry WT (1998) Hydrolysis and biodegradation of the vesicant agent HT: two potential approaches. Bioremediat J 3:191–203

    Google Scholar 

  • Irvine DA, Earley JP, Cassidy DP, Harvey SP (1997) Biodegradation of sulfur mustard hydrolysate in the sequencing batch reactor. Water Sci Technol 35:67–74

    CAS  Google Scholar 

  • Kim J-W, Rainina EI, Efremenko E, Engler CR, Wild JR (1997) Degradation of thiodiglycol, the hydrolysis product of sulfur mustard, with bacteria immobilized within poly(vinyl) alcohol cryogels. Biotechnol Lett 19:1067–1071

    Article  CAS  Google Scholar 

  • Lear G, Harbottle MJ, van der Gast CJ, Jackman SA, Knowles CJ, Sills G, Thompson IP (2004) The effect of electrokinetics on soil microbial communities. Soil Biol Biochem 36:1751–1760

    Article  CAS  Google Scholar 

  • Lee KP, Allen HE (1998) Environmental transformation mechanisms of thiodiglycol. Environ Toxicol Chem 17:1720–1726

    Article  CAS  Google Scholar 

  • Mahato TH, Prasad GK, Singh B, Batra K, Ganesan K (2010) Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide. Microporous Mesoporous Mater 132(1–2):15–21. doi:10.1016/j.micromeso.2009.05.035

    Article  CAS  Google Scholar 

  • Malhotra RC, Ganesan K, Sugendran K, Swamy RV (1999) Chemistry and toxicology of sulphur mustard toxicology of sulphur mustard. Def Sci J 49:97–116

    CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed  CAS  Google Scholar 

  • Medvedeva N, Polyak Y, Kuzikova I (2008a) Effect of dumped chemical weapon on the Baltic Sea microbiota. 2008 IEEE/OES US/EU-Baltic international symposium

  • Medvedeva N, Polyak Y, Kuzikova I, Orlova O, Zharikov G (2008b) The effect of mustard gas on the biological activity of soil. Environ Res 106(3):289–295. doi:10.1016/j.envres.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  • Medvedeva N, Polyak Y, Kuzikova I, Orlova O, Zharikov G (2008c) The effect of mustard gas on the biological activity of soil. Environ Res 106:289–295

    Article  PubMed  CAS  Google Scholar 

  • Medvedeva N, Polyak Y, Kankaanpaa H, Zaytseva T (2009) Microbial responses to mustard gas dumped in the Baltic Sea. Mar Environ Res 68(2):71–81. doi:10.1016/j.marenvres.2009.04.007

    Article  PubMed  CAS  Google Scholar 

  • Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107(12):933–974

    Article  PubMed  CAS  Google Scholar 

  • Reuiz-Herrera J, Starkey RL (1970) Dissimilation of methionine by Achromobacter starkeyi. J Bacteriol 104:1286–1293

    Google Scholar 

  • Shinjiro T, Naoko K, Fusako K, Johannis AD, Masaaki Y (2003) Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium tenotrophomonas maltophilia. FEMS Microbiol Lett 218:345–349

    Article  Google Scholar 

  • Terzic O (2010) Screening of degradation products, impurities and precursors of chemical warfare agents in water and wet or dry organic liquid samples by in-sorbent tube silylation followed by thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1217(30):4987–4995. doi:10.1016/j.chroma.2010.05.042

    Article  PubMed  CAS  Google Scholar 

  • Toups M, Wubbeler JH, Steinbuchel A (2010) Microbial utilization of the industrial wastewater pollutants 2-ethylhexylthioglycolic acid and iso-octylthioglycolic acid by aerobic Gram-negative bacteria. Biodegradation 21(2):309–319. doi:10.1007/s10532-009-9302-y

    Article  PubMed  CAS  Google Scholar 

  • Vangnai AS, Sayavedra-Soto LA, Arp DJ (2002) Roles for the two 1-butanol dehydrogenases of Pseudomonas butanovora in butane and 1-butanol metabolism. J Bacteriol 184:4343–4350

    Article  PubMed  CAS  Google Scholar 

  • Vijayaraghavan R, Kulkarni A, Pant SC, Kumar P, Rao PVL, Gupta N, Gautam A, Ganesan K (2005) Differential toxicity of sulfur mustard administered through percutaneous, subcutaneous, and oral routes. Toxicol Appl Pharmacol 202:180–188

    Article  PubMed  CAS  Google Scholar 

  • Whiteley AS, Bailey MJ (2000) Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400–2407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere appreciations to the Royal Air Force and the Defence Science and Technology Laboratory for their assistance in access soil sampling and risk assessment for carrying out laboratory studies and chemical analysis and the Natural Environment Research Council for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Muir, R., McFarlane, N.R. et al. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil. Biodegradation 24, 125–135 (2013). https://doi.org/10.1007/s10532-012-9564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9564-7

Keywords

Navigation