Skip to main content
Log in

Charophyte diversity and their habitat conservation perspectives: insights from vegetation versus sediments survey of a small pond in Serbia

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Many charophytes are rare and endangered algae species. All charophyte species significantly contribute to the stability and health of the ecosystems they inhabit. Charophytes survive in their habitats thanks to the longevity of the diaspores (oospores and gyrogonites) in the sediment. Many charophyte species have a specific phenology and can sometimes be overlooked in surveys of macrophyte vegetation. We monitored vegetation for three years and collected sediment from a small water body in Serbia to test the hypotheses that (a) Extant charophyte diaspores have promising, yet currently limited application as taxonomic markers, (b) Vegetation data on charophyte diversity may provide different information than data obtained by extracting diaspores from sediments and (c) parallel surveys of vegetation and sediments can provide a more comprehensive view of charophyte diversity compared to traditional annual vegetation monitoring. Diaspores proved to be promising taxonomic characters for charophyte identification. In our study, six taxa could be identified on a species level based on diaspores alone, while one species group (Chara spp.) requires further investigation as it could consist of up to four species. Compared to vegetation, the sediment survey provided different information on charophyte diversity and confirmed the presence of the species Sphaerochara intricata and Sphaerochara prolifera, which were never detected during the vegetation survey. Sediment studies conducted in parallel with vegetation studies provide important insight into the diversity of charophytes and the prospects for their habitat conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Ivana Trbojević, upon reasonable request.

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image Processing with ImageJ. Biophoton Int 11(7):36–42

    Google Scholar 

  • Alderton E, Sayer CD, Davies R, Lambert SJ, Axmacher JC (2017) Buried alive: aquatic plants survive in ‘ghost ponds’ under agricultural fields. Biol Conserv 212:105–110. https://doi.org/10.1016/j.biocon.2017.06.004

    Article  Google Scholar 

  • Alonso-Guillén JL (2011) Los carófitos en la restauración de ecosistemas acuáticos. Un caso práctico en el parc natural de l¿ Albufera de València. Dissertation, Universitat de València

  • Ayres KR, Sayer CD, Skeate ER et al (2008) Palaeolimnology as a tool to inform shallow lake management: an example from Upton Great Broad, Norfolk, UK. Biodivers Conserv 17:2153–2168. https://doi.org/10.1007/s10531-007-9223-1

    Article  Google Scholar 

  • Baastrup-Spohr L, Iversen L, Dahl-Nielsen J, Sand-Jensen K (2013) Seventy years of changes in the abundance of Danish charophytes. Freshw Biol 58(8):1682–1693. https://doi.org/10.1111/fwb.12159

    Article  CAS  Google Scholar 

  • Bhandari S, Momohara A, Paudayal KN (2009) Late Pleistocene plant macro-fossils from the Gokarna formation of the Kathmandu Valley Central Nepal. Bullet Dep Geol 12:75–88

    Article  Google Scholar 

  • Biggs J, Von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3–39. https://doi.org/10.1007/s10750-016-3007-0

    Article  Google Scholar 

  • Blaženčić J (2014) Overview of the stoneworts (Charales) of Serbia with the estimation of the threat status. Bot Serb 38(1):121–130

    Google Scholar 

  • Blaženčić J, Stevanović B, Blaženčić Ž, Stevanović V (2006) Red data list of charophytes in the Balkans. Biodivers Conserv 15(11):3445–3457. https://doi.org/10.1007/s10531-005-2008-5

    Article  Google Scholar 

  • Blindow I, Dahlke S, Dewart A, Flügge S, Hendreschke M, Kerkow A, Meyer J (2016) Long-term and interannual changes of submerged macrophytes and their associated diaspore reservoir in a shallow southern Baltic Sea bay: influence of eutrophication and climate. Hydrobiologia 778:121–136. https://doi.org/10.1007/s10750-016-2655-4

    Article  CAS  Google Scholar 

  • Blindow I, Carlsson M, van de Weyer K (2021) Re-Establishment techniques and transplantations of charophytes to support threatened species. Plants 10(9):1830. https://doi.org/10.3390/plants10091830

    Article  PubMed  PubMed Central  Google Scholar 

  • Blume M, Blindow I, Dahlke S, Vedder F (2009) Oospore variation in closely related Chara taxa. J Phycol 45(5):995–1002. https://doi.org/10.1111/j.1529-8817.2009.00725.x

    Article  PubMed  Google Scholar 

  • Boissezon A, Auderset Joye D, Garcia T (2018) Temporal and spatial changes in population structure of the freshwater macroalga Nitellopsis obtusa (Desv.) J. Groves. Bot Lett 165(1):103–114. https://doi.org/10.1080/23818107.2017.1356239

    Article  Google Scholar 

  • Bonis A, Grillas P (2002) Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquat Bot 72(3–4):235–248. https://doi.org/10.1016/S0304-3770(01)00203-0

    Article  Google Scholar 

  • Casanova MT, Brock MA (1999) Charophyte occurrence, seed banks and establishment in farm dams in New South Wales. Aust J Bot 47(3):437–444. https://doi.org/10.1071/BT97099

  • Casanova MT (1997) Oospore variation in three species of Chara (Charales, Chlorophyta). Phycologia 36(4):274–280. https://doi.org/10.2216/i0031-8884-36-4-274.1

    Article  Google Scholar 

  • Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw 61:1–36. https://doi.org/10.18637/jss.v061.i06

    Article  Google Scholar 

  • Christodoulou MD, Clark JY, Culham A (2020) The Cinderella discipline: morphometrics and their use in botanical classification. Bot J Linn 194(4):385–396. https://doi.org/10.1093/botlinnean/boaa055

    Article  Google Scholar 

  • Corillion R (1957) Les Charophycées de France et de France et d’Europe Occidentale. Société Scientifique de Bretagne, Bretagne, p 499

    Google Scholar 

  • Damnjanović B, Novković M, Vesić A, Živković M, Radulović S, Vukov D, Anđelković A, Cvijanović D (2019) Biodiversity-friendly designs for gravel pit lakes along the Drina River floodplain (the Middle Danube Basin, Serbia). Wetl Ecol Manag 27:1–22. https://doi.org/10.1007/s11273-018-9641-8

    Article  Google Scholar 

  • Digital Plant Atlas—RUG & DAI. Groningen Institute of Archaeology (GIA—RUG) and Deutsches Archäologisches Institut (DAI)—Berlin. Available at: https://www.plantatlas.eu/repository. Accessed 16 Feb 2023

  • Doege A, van de Weyer K, Becker R, Schubert H (2016) Bioindikation mit Characeen. In: Characeen Deutschlands AG (ed) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin, pp 97–138

    Google Scholar 

  • European Commission (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Union L 206:7–50

  • European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Union L 327

  • Garcia A (1994) Pleistocene Charophyta from Arroyo Perucho Verna, Province of Entre Rios. Argent J Paleolimnol 10(1):53–58. https://doi.org/10.1007/BF00683146

    Article  Google Scholar 

  • Grillas P, Garcia-Murillo P, Geertz-Hansen O et al (1993) Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia 94(1):1–6. https://doi.org/10.1007/BF00317293

    Article  CAS  PubMed  Google Scholar 

  • Groves J, Bullock-Webster GR (1924) The British Charophyta. Charae, vol 2. The Ray Society, London, p 129

    Google Scholar 

  • Haas JN (1994) First identification key for charophyte oospores from central Europe. Eur J Phycol 29(4):227–235. https://doi.org/10.1080/09670269400650681

    Article  Google Scholar 

  • Holzhausen A, Porsche C, Schubert H (2017) Viability assessment and estimation of the germination potential of charophyte oospores: testing for site and species specificity. Bot Lett 165(1):147–158. https://doi.org/10.1080/23818107.2017.1393460

    Article  CAS  Google Scholar 

  • Holzhausen A, Nowak P, Ballot A, Becker R, Gebert J, Gregor T, Kenneth K, Lambert E, Pérez W, Raabe U, Schneider S, Stewart N, van de Weyer K, Wilde V, Schubert H (2023) Plastid DNA sequences and oospore characters of some European taxa of Tolypella section Tolypella (Characeae) identify five clusters, including one new cryptic Tolypella taxon from Sardinia, but they do not coincide with current morphological descriptions. Front Plant Sci 14:704. https://doi.org/10.3389/fpls.2023.1096181

    Article  Google Scholar 

  • Holzhausen A, Casanova M, Stewart N, Sayer C, Goldsmith B (2024) Extant oospores. In: Schubert H, Gregor T, Blindow I, Nat E, Stewart N, Romanov R, van de Weyer K, Denys L, Korsch H, Casanova M (eds) Characeae of Europe. Springer, Berlin (In Press)

    Google Scholar 

  • Kassambara A, Mundt F (2020) factoextra: Extract and Visualize the Results of Multivariate Data Analyses R package version 1.0.7, https://CRAN.R-project.org/package=factoextra. Accessed 7 Apr 2023

  • Kirkbride JH, Gunn CR, Dallwitz MJ (2000) Family guide for fruits and seeds: descriptions, illustrations, identification, and information retrieval. Available at: https://www.delta-intkey.com/famfs/index.htm. Accessed 16 Feb 2023

  • Kolada A (2021) Charophyte variation in sensitivity to eutrophication affects their potential for the trophic and ecological status indication. Knowl Manag Aquat Ecosyst 422:30. https://doi.org/10.1051/kmae/2021030

    Article  Google Scholar 

  • Krause W (1986) Zur Bestimmungsmöglichkeit subfossiler Characeen-Oosporen an Beispielen aus Schweizer Seen. Vierteljahrsschrift Der Naturforschenden Gesellschaft in Zürich 141:295–313

    Google Scholar 

  • Krause W (1997) Charales (Charophyceae). Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena, p 202

    Google Scholar 

  • Kröpelin S, Soulié-Märsche I (1991) Charophyte remains from Wadi Howar as evidence for deep Mid-Holocene freshwater lakes in the Eastern Sahara of Northwest Sudan. Quat Res 36(2):210–223. https://doi.org/10.1016/0033-5894(91)90026-2

    Article  Google Scholar 

  • Kuhn M (2022) caret: Classification and Regression Training. R package version 6.0-93. https://CRAN.R-project.org/package=caret Accessed 7 Apr 2023

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2022) cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4, https://CRAN.R-project.org/package=cluster. Accessed 7 Apr 2023

  • Marković A, Blaženčić J, Tanasković A, Šinžar-Sekulić J (2023) Diversity and ecology of Charophytes from Vojvodina (Serbia) in relation to physico-chemical and bioclimatic habitat properties. Diversity 15(3):342. https://doi.org/10.3390/d15030342

    Article  Google Scholar 

  • Migula W (1897) Die Characeen Deutschlands, Oesterreichs und der Schweiz. In: Rabenhorst, L. (Hrsg.): Kryptogamenflora, Band V, 2. Auflage, Kummer, Leipzig

  • Milovanović V, Popović S, Predojević D, Simić GS, Ržaničanin A, Sekulić JŠ, Trbojević I (2022) Oospore features among morphologically similar and closely related charophyte species: consistency and variability. Cryptogam Algol 43(12):189–200. https://doi.org/10.5252/cryptogamie-algologie2022v43a12

    Article  Google Scholar 

  • Mouronval JB, Baudouin S, Borel N, Soulié-Märsche I, Klesczewski M, Grillas P (2015) Guide des Characées de France méditerranéenne. Office national de la chasse et de la faune sauvage, 211

  • Nat E (2024) Chara virgata. In: Schubert H, Gregor T, Blindow I, Nat E, Stewart N, Romanov R, van de Weyer K, Denys L, Korsch H, Casanova M (eds) Characeae of Europe. Springer, Berlin (In Press)

    Google Scholar 

  • Nowak P, Steinhardt T, von Ammon U et al (2017) Diaspore bank analysis of Baltic coastal waters. Bot Lett 165(1):159–173. https://doi.org/10.1080/23818107.2017.1400464

    Article  Google Scholar 

  • Nowak P, Wiebe C, Karez R, Schubert H (2021) Applications of environmental DNA methods for charophyte biodiversity. ARPHA Conf Abstr 4:e64944

    Google Scholar 

  • Peck RE, Morales GA (1966) The Devonian and Lower Mississippian charophytes of North America. Micropaleontology 12(3):303–324

    Article  Google Scholar 

  • Poikane S, Portielje R, Denys L, Elferts D, Kelly M, Kolada A, Mäemets H, Phillips G, Søndergaard M, Willby N, van den Berg M (2018) Macrophyte assessment in European lakes: diverse approaches but convergent views of ‘good’ecological status. Ecol Indic 94:185–197. https://doi.org/10.1016/j.ecolind.2018.06.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor VI (1967) Storage and germination of Chara oospores. J Phycol 3(2):90–92

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing

  • RAL Classic Colour Chart. https://www.e-paint.co.uk/pdfs/ral%20colour%20chart.pdf. Accessed 7 Apr 2023

  • Riley WD, Potter EC, Biggs J et al (2018) Small Water bodies in Great Britain and Ireland: ecosystem function, human-generated degradation, and options for restorative action. Sci Total Environ 645:1598–1616. https://doi.org/10.1016/j.scitotenv.2018.07.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo MA, Puche E, Segura M, Arnal A, Rojo C (2021) Sediment underneath charophyte meadows is enriched in viable ephippia and enhances the benthic periphytic biofilm. Hydrobiologia 848(21):5203–5221. https://doi.org/10.1007/s10750-021-04702-x

    Article  CAS  Google Scholar 

  • Romanov RE, Gontcharov AA, Barinova SS (2015) Chara globata Mig (Streptophyta: Charales): rare species revised. Fottea 15(1):39–50. https://doi.org/10.5507/fot.2015.004

    Article  Google Scholar 

  • Sanjuan J, Vicente A, Flor-Arnau N, Monleón T, Cambra J, Martín-Closas C (2016) Effects of light and temperature on Chara vulgaris (Charophyceae) gyrogonite productivity and polymorphism–palaeoenvironmental implications. Phycologia 56(2):204–212. https://doi.org/10.2216/15-140.1

    Article  CAS  Google Scholar 

  • Santoul F, Figuerola J, Green AJ (2004) Importance of gravel pits for the conservation of waterbirds in the Garonne river floodplain (southwest France). Biodivers Conserv 13:1231–1243. https://doi.org/10.1023/B:BIOC.0000018154.02096.4b

    Article  Google Scholar 

  • Schneider SC, García A, Martín-Closas C, Chivas AR (2015) The role of charophytes (Charales) in past and present environments: an overview. Aquat Bot 120:2–6. https://doi.org/10.1016/j.aquabot.2014.10.001

    Article  Google Scholar 

  • Schubert H, Blindow I, Bueno NC, Casanova MT, Pełechaty M, Pukacz A (2018) Ecology of charophytes–permanent pioneers and ecosystem engineers. Perspect Phycol. https://doi.org/10.1127/pip/2018/0080

    Article  Google Scholar 

  • Šinžar-Sekulić J, Tanasković A (2018) Preliminary research of macrophyte production in Danube reservoirs–case study of two invasive plant species–native Trapa natans and alien Paspalum paspalodes. In 8th Danube Academies Conference: Belgrade, 21–22 September, 2017 (pp. 33–43). Serbian Academy of Sciences and Arts, Belgrade

  • Søndergaard M, Johansson S, Lauridsen L, Jørgensen B, Liboriussen L, Jeppesen E (2010) Submerged macrophytes as indicators of the ecological quality of lakes. Freshw Biol 55(4):893–908. https://doi.org/10.1016/j.ecolind.2018.06.056

    Article  CAS  Google Scholar 

  • Soulié-Märsche I, García A (2015) Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquat Bot 120:7–17. https://doi.org/10.1016/j.aquabot.2014.06.003

    Article  Google Scholar 

  • Soulié-Märsche I, Vautier J (2004) Ecology and life cycle of Chara braunii (Charales) in a Mediterranean habitat. Vie et Milieu 54:37–45

    Google Scholar 

  • Soulié-Märsche I, Benammi M, Gemayel P (2002) Biogeography of living and fossil Nitellopsis (Charophyta) in relationship to new finds from Morocco. J Biogeogr 29(12):1703–1711. https://doi.org/10.1046/j.1365-2699.2002.00749.x

    Article  Google Scholar 

  • Soulié-Märsche I (1989) Etude comparée de Gyrogonites de Charophytes actuelles et fossiles et phylogénie des genres actuels. Thesis, Universitet des Sciences et Techniques du Languedoc, Montpellier, 237

  • The Ministry of Environment and Spatial Planning and the Ministry of Agriculture, Forestry and Water Management (2016) Rules on the proclamation and protection of strictly protected and protected wild species of plants, animals and mushrooms. Official Gazette of the Republic of Serbia 5/2010, 47/2011, 32/2016, 98/2016: In Serbian

  • Trbojević I, Predojević D (2022) Algae in shallow and small water bodies of Serbia: a frame for species and habitat protection. Small Water Bodies of the Western Balkans. Springer, Cham, pp 147–188

    Chapter  Google Scholar 

  • Trbojević IS, Predojević DD, Šinžar-Sekulić JB, Nikolić NV, Jovanović IM, Subakov-Simić GV (2019) Charophytes of Gornje Podunavlje ponds: revitalization process aspect. Zbornik Matice Srpske Za Prirodne Nauke 136:123–131

    Article  Google Scholar 

  • Trbojević I, Marković A, Blaženčić J, Subakov Simić G, Nowak P, Ballot A, Schneider S (2020a) Genetic and morphological variation in Chara contraria and a taxon morphologically resembling Chara connivens. Bot Lett 167(2):187–200

    Article  Google Scholar 

  • Trbojević I, Milovanović V, Subakov Simić G (2020b) The discovery of the rare Chara baueri (Charales, Charophyceae) in Serbia. Plants 9(11):1606. https://doi.org/10.3390/plants9111606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbaniak JG, ˛abka M, (2014) Polish Charophytes. An Illustrated Guide to Identification. Universytet Przyrodniczy We Wroclawiu, Wroclaw

    Google Scholar 

  • Urbaniak J, Langangen A, van Raam J (2012) Oospore wall ornamentation in the genus Tolypella (Charales, Charophyceae). J Phycol 48(6):1538–1545. https://doi.org/10.1111/jpy.12007

    Article  PubMed  Google Scholar 

  • van de Weyer K (2016a) Tolypella intricata. In: Characeen Deutschlands AG (ed) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin, pp 522–529

    Google Scholar 

  • van de Weyer K (2016b) Tolypella prolifera. In: Characeen Deutschlands AG (ed) Armleuchteralgen. Die Characeen Deutschlands. Springer, Berlin, pp 539–546

    Google Scholar 

  • van de Weyer K (2024a) Sphaerocharaa intricata. In: Schubert H, Gregor T, Blindow I, Nat E, Stewart N, Romanov R, van de Weyer K, Denys L, Korsch H, Casanova M (eds) Characeae of Europe. Springer, Berlin (In Press)

    Google Scholar 

  • van de Weyer K (2024b) Sphaerocharaa prolifera. In: Schubert H, Gregor T, Blindow I, Nat E, Stewart N, Romanov R, van de Weyer K, Denys L, Korsch H, Casanova M (eds) Characeae of Europe. Springer, Berlin (In Press)

    Google Scholar 

  • Vedder F (2004) Morphologie und Taxonomie rezenter und subfossiler Characeen-Oosporen aus der Ostsee [Morphology and Taxonomy of Recent and Subfossil Oospores of Charophytes out of the Baltic Sea]. Rostocker Meeresbiologische Beiträge 13:43–54

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vesić A (2016) Ekološka studija pršljenčica (Charophyceae) stajaćih i sporotekućih voda Vojvodine. Dissertation, Faculty of Biology University of Belgrade

  • Wood RD, Imahori K (1965) A revision of the characeae. First part: monograph of the characeae. J Cramer Verlag, Weinheim, p 904

    Google Scholar 

  • Wood PJ, Greenwood MT, Agnew MD (2003) Pond biodiversity and habitat loss in the UK. Area 35(2):206–216. https://doi.org/10.1111/1475-4762.00249

    Article  Google Scholar 

  • Zhang L, Zheng Y, Zhong G, Wang Q (2019) Research on leaf species identification based on principal component and linear discriminant analysis. Cluster Comput 22:7795–7804. https://doi.org/10.1007/s10586-017-1439-6

    Article  Google Scholar 

  • Гoллepбax MM, Кpacaвинa ЛК (1983) Xapoвыe Boдopocли. Oпpeдeлитeль Πpecнoвoдныx Boдopocлeй CCCP. Nauka, Leningrad

    Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to Milica Petrović Ðurić for the technical assistance, expertise and commitment in material processing, and to Prof. Milica Ljaljević Grbić for her kind support of our study. We extend our gratitude to Ms Nadežda Buntić for English language editing. The authors owe special thanks to Dr. habil. Ingeborg Soulié-Märsche for constructive and supportive comments and suggestions, that directed and shaped our research outcomes. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions, which have significantly improved our manuscript.

Funding

This work was supported by the Rufford foundation (Grant no. 25789-1 and Grant no. 34213-2), and Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant no. 451-03-47/2023-01/ 200178).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. In the field, the material was collected by Ivana Trbojević, Vanja Milovanović and Jasmina Šinžar Sekulić. Analyses of the material in the laboratory were performed by Ivana Trbojević and Vanja Milovanović. Data analysis and interpretation was done by Jasmina Šinžar Sekulić, Ivana Trbojević and Vanja Milovanović. The first draft of the manuscript was written by Vanja Milovanović and Ivana Trbojević, and all authors edited and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ivana Trbojević.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanović, V., Šinžar Sekulić, J., Cvijanović, D. et al. Charophyte diversity and their habitat conservation perspectives: insights from vegetation versus sediments survey of a small pond in Serbia. Biodivers Conserv 33, 1413–1437 (2024). https://doi.org/10.1007/s10531-024-02808-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-024-02808-x

Keywords

Navigation