Skip to main content

Advertisement

Log in

Importance of floodplains for water beetle diversity: a crucial habitat for the endangered beetle Graphoderus bilineatus in Southeastern Europe

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Natural floodplains are rapidly disappearing ecosystems worldwide, primarily due to changing hydrology. Continental Croatia harbours some of the largest remaining and best preserved natural riverine floodplains in Europe. To establish conservation priorities, we surveyed water beetle assemblages in three large floodplains situated in the Danube, Drava, and Sava basins (Ramsar sites Kopački rit and Lonjsko polje, and Spačva riparian forest), with special focus on the red-listed beetle Graphoderus bilineatus. The main aim of our study was to investigate the key environmental factors driving variation of water beetle assemblage structure and occurrences of G. bilineatus. Environmental variables describing habitat types and various habitat characteristics were measured and/or estimated for each sampling site. A total of 4.339 water beetle specimens belonging to 98 species were recorded. G. bilineatus was recorded at two out of the three investigated floodplains at 14 out of 30 sampling sites. We found significant differences in water beetle assemblages among the three localities based on the total species dataset, accompanied by different environmental background and vegetation composition. The density of riparian vegetation, permanent water durability, shading, type of bank, and plant communities best explained the distribution of the water beetle species. Based on the regression model, human impact and shading have significant effects on the abundance of G. bilineatus. Sites with G. bilineatus presence have significantly higher species richness compared to the sites without the species. Co-existence analysis indicates various types of associations between G. bilineatus and other water beetle species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second International Symposium on Information Theory. Akadémiai Kiadó, Budapest, Hungary, pp 267–281

    Google Scholar 

  • Ambrožič Š, Gaberščik A, Vrezec A, Germ M (2018) Hydrophyte community structure affects the presence and abundance of the water beetle family Dytiscidae in water bodies along the Drava River. Ecol Eng 120:397–404

    Google Scholar 

  • Bakšić N, Pavlović N, Duić Ž (2015) Analysis of the Groundwater Series in the Area of Lowland Forests in the Spačva Basin. Doctoral symposium in civil engineering. Zagreb

  • Bameul F (1994) Les Coléoptères aquatiques des Marais de la Perge (Gironde), témoins de la fi n des temps glaciaires en Aquitaine. Bulletin de la Societe Entomologique de France 99:301–321

    Google Scholar 

  • Bameul F (1997) Hydaticus aruspex Clark rediscovered in France, and notes on the identification of the French species of Hydaticus Leach (Coleoptera, Dytiscidae). Bulletin de la Societe Entomologique de France 102(5):419–437

    Google Scholar 

  • Bameul F (2013) Disparition de Graphoderus bilineatus (De Geer, 1774) (Coleoptera, Dytiscidae) des marais de la Perge cause par l’Ecrevisse américaine à patte rouges. Bulletin de la Societe Entomologique de France 118:133–136

    Google Scholar 

  • Bayley PB (1991) The flood pulse advantage and the restoration of river-floodplain systems. Regul Rivers 6:75–86

    Google Scholar 

  • Bereczki C, Szivak I, Mora A, Csabai Z (2012) Variation of aquatic insect assemblages among seasons and microhabitats in Hungarian second-order streams. Aquat Insects 34(1):103–112

    Google Scholar 

  • Bonacci O, Tadić Z, Moržan A, Radeljak I (2002) Park prirode Kopački rit - Plan upravljanja - Sektorska studija „Hidrologija i meteorologija“. Hidroing d.o.o. za projektiranje i inženjering, Osijek, Croatia, p 177

    Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Google Scholar 

  • Bosi G (2001) Abundance, diversity and seasonal succession of dytiscid and noterid beetles (Coleoptera: Adephaga) in two marshes of the Eastern Po Plain (Italy). Hydrobiologia 459:1–7

    Google Scholar 

  • Boukal DS, Boukal M, Fikáček M, Hájek J, Klečka J, Skalickỳ S, Štastinỳ J, Trávniček D (2007) Catalogue of water beetles of the Czech Republic (Coleoptera: Sphaeriusidae, Gyrinidae, Haliplidae, Noteridae, Hygrobiidae, Dytiscidae, Helophoridae, Georissidae, Hydrochidae, Spercheidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae, Psephenidae). Klapalekiana (Suppl) 43:289

    Google Scholar 

  • Boyce DC (2004) A study of the distribution and ecology of the lesser silver water beetle Hydrochara caraboides on the Somerset Levels. English Nature Research Reports. Peterborough. pp 69

  • Buijse AD, Coops H, Staras M, Jans LH, Van Geest GJ, Grifts RE, Ibelings BW, Oosterberg W, Roozen FCJM (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907

    Google Scholar 

  • Cao Y, Williams DD, Williams NE (1998) How important are rare species in aquatic community ecology and bioassessment? Limnol Oceanogr 43:1403–1409

    Google Scholar 

  • Carron G (2005) Kommentierte Checkliste der Dytiscidae und Noteridae (Coleoptera) der Schweiz. Mitteilungen der Entomologischen Gessellschaft Basel 55(3):121–131

    Google Scholar 

  • Cestarić D, Škvorc Ž, Franjić J, Sever K, Krstonošić D (2017) Forest plant community changes in the Spačva lowland area (E Croatia). Plant Biosyst 151(4):584–597

    Google Scholar 

  • Csabai Z (2000) Vízibogarak kishatározója, I. kötet. Vízi természet- és kornyezetvedelem. 15. kötet, Környezetgazdálkodási intézet, Budapest, pp 267

  • Csabai Z, Gidó Z, Szél G (2002) Vízibogarak kishatározója II. [A Guide for the Identifi cation of Water Beetles of Hungary II.] In: Vízi természet- és környezetvédelem. 16. kötet. [Water, Nature and Environment Protection. Vol. 16.] Environmental Management Institute, Budapest, pp 206

  • Cuppen J, Koese B, Sierdsema H (2006) Distribution and habitat of Graphoderus bilineatus in the Netherlands (Coleoptera: Dytiscidae). Nederlandse Faunistische Mededelingen 24:29–40

    Google Scholar 

  • De Szalay FA, Resh VH (2000) Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshw Biol 45:295–308

    Google Scholar 

  • Death RG (2008) Effects of floods on aquatic invertebrates. In: Lancaster J, Briers RA (eds) Aquatic insects: challenges to population. Proceedings of the Royal Entomological Society’s 24th Symposium, CAB International, Preston, UK, pp 103–122

  • EIONET (2012) Graphoderus bilineatus. European Environment Agency, 1–9. https://bd.eionet.europa.eu/article17/reports2012/species/summary/?group=Arthropods&period=3&subject=Graphoderus+bilineatus

  • Eyre MD, Foster GN (1989) A comparison of aquatic Heteroptera and Coleoptera communities as a basis for environmental and conservation assessments in static water sites. J Appl Entomol 108(1–5):355–362

    Google Scholar 

  • Eyre MD, Foster GN, Foster AF (1990) Factors affecting the distribution of water beetle species assemblages in drains of eastern England. J Appl Entomol 109:217–225

    Google Scholar 

  • Fairchild GW, Faldus AM, Matta JF (2000) Beetle assemblages in ponds; effects of habitat and site age. Freshw Ecol 44:523–534

    Google Scholar 

  • Fairchild GW, Cruz J, Faulds M, Short AEZ, Matta JF (2003) Microhabitat and landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent ponds. J N Am Benthol Soc 22:224–240

    Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Google Scholar 

  • Foster GN (1987) The use of Coleoptera Records in Assessing the Conservation Status of Wetlands. In: Luff ML (ed) The use of invertebrates in site assessment for conservation. The University of Newcastle upon Tyne, Newcastle upon Tyne, pp 8–17

    Google Scholar 

  • Foster GN (1996) Graphoderus bilineatus (De Geer, 1774). In: Van Helsdingen PJ, Willemse LPM, Speight MCD (eds) Background information on invertebrates of the Habitats Directive and the Bern Convention. Part 1 - Crustacea, Coleoptera, and Lepidoptera. European Invertebrate Survey, Leiden, pp 40–48

    Google Scholar 

  • Foster GN (2010) A review of the scarce and threatened Coleoptera of Great Britain Part (3): Water beetles of Great Britain. Species Status 1. Joint Nature Conservation Committee, Peterborough

  • Foster GN, Nelson BH, Connor Á (2009) Ireland Red List No. 1-Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland

  • Galewski K (1971) A study of morphobiotic adaptations of European species of the Dytiscidae. Polskie Pismo Entomol 41:488–702

    Google Scholar 

  • Galewski K (1975) Descriptions of the unknown larvae of the genera Hydaticus Leach and Graphoderus Dejean (Col., Dytiscidae) with some data on their biology. Annales Zoologici, Warszawa 32:249–268

    Google Scholar 

  • Gioria M, Schaffers A, Bacaro G, Feehan J (2010) The conservation value of farmland ponds: predicting water beetle assemblages using vascular plants as a surrogate group. Biol Conserv 143:1125–1133

    Google Scholar 

  • Gopal B, Junk WJ (2000) Biodiversity in wetlands: an introduction. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys Publishers b.V., Leiden, pp 1–10

    Google Scholar 

  • Greenwood MJ, Booker DJ (2015) The influence of antecedent floods on aquatic invertebrate diversity, abundance, and community composition. Ecohydrology 8(2):188–203

    Google Scholar 

  • Gueorguiev VB (1965) Deuxieme contribution a la connaissance des Coleopteres Hydrocanthares de Yougoslavie. Acta ento Musei Nationalis Pragae, Prag 36:489–500

    Google Scholar 

  • Hendrich L, Balke M (2000) Verbreitung, Habitatbindung, Gefährdung und mögliche Schutzmaβnahmen der FFH- Arten Dytiscus latissimus Linnaeus, 1758 (Der Breitrand) und Graphoderus bilineatus (De Geer, 1774) in Deutschland (Coleoptera: Dytiscidae). Insecta Berlin 6:98–114

    Google Scholar 

  • Hendrich L, Balke M (2002) Breitrand (Dytiscus latissimus) und Schmalbindiger Tauch-flügelkäfer (Graphoderus bilineatus). Berichtspflichten in Natura-2000-Gebieten – Empfehlungen zur Erfassungder Arten des Anhangs II und Charakterisierung der Lebensraumtypen des Anhangs I derFFH-Richtlinie. Angewandte Landschaftsökologie 42:301–305

    Google Scholar 

  • Hendrich L, Balke M (2005) Graphoderus bilineatus (De Geer, 1774) (Coleoptera: Dytiscidae). In: Petersen B, Ellwanger G, Biewald G, Hauke U, Ludwig G, Pretscer P, Schröder E, Sysmank A (Eds.): Das europäische Schutzgebietssystem Natura 2000. Ökologie und Verbreitung von Arten der FFH-Richtlinie in Deutschland. Band 1: Pflanzen und Wirbellose. Schriftenreihe für Landschaftspflege und Naturschutz 69(1):388–396

  • Hendrich L, Müller R (2017) Rote Liste und Gesamtartenliste der Wasserkäfer von Berlin (Coleoptera: Hydradephaga, Hydrophiloidea part., Hydraenidae, Elmidae und Dryopidae). 38 pp. In: Der Landesbeauftragte für Naturschutz und Landschaftspflege / Senatsverwaltung für Umwelt, Verkehr und Klimaschutz (Eds.), Rote Listen der gefährdeten Pflanzen, Pilze und Tiere von Berlin. https://doi.org/10.14279/depositonce-5851

  • Holmen M (1993) Fredere insecter I Denmark. Del 3: Biller knytett till vand. Entomologiske Meddelelser 61:117–134

    Google Scholar 

  • Hufnagel L, Bakony G, Vásárhelyi T (1999) New approach for habitat characterization based on species lists of aquatic and semiaquatic bugs. Environ Monit Assess 58:305–316

    Google Scholar 

  • Iversen LL, Rannap R, Thomsen PF, Kielgast J, Sand Jensen K (2013) How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus. Ecography 36:770–777

    Google Scholar 

  • Iversen LL, Rannap R, Briggs L, Sand-Jensen K (2017) Time-restricted flight ability influences dispersal and colonization rates in a group of freshwater beetles. Ecol Evol 7(3):824–830

    PubMed  PubMed Central  Google Scholar 

  • Junk WJ (1999) The flood pulse concept of large rivers: learning from the tropics. Large Rivers 3:261–280

    Google Scholar 

  • Kajzer A (2001) Prispevek k poznavanju vodnih hroščev (Coleoptera: Hydrocanthares) Slovenije in dela Balkana. Acta Entomologica Slovenica 9(1):83–99

    Google Scholar 

  • Kálmán Z, Kálmán A, Soós N, Csabai Z (2007) Possibilities and restrictions of using bottle trap method for investigations on diving beetle populations I. Acta Biologica Debrecina Supplementum Oecologica Hungarica 16:77–87

    Google Scholar 

  • Klausnitzer B (1984) Käfer im und am Wasser mit 1 04 Abbildungen. Die Neue Brehmbücherei 567:148

    Google Scholar 

  • Klimo E, Hager H, Matić S, Anić I, Kulhavý J (2008) Floodplain forests of the temperate zone of Europe. Zlín, Lesnická Práce, p 623

    Google Scholar 

  • Koese B, Cuppen J (2006) Sampling methods for Graphoderus bilineatus (Coleoptera: Dytiscidae). Nederlandse Faunistische Mededelingen 24:41–48

    Google Scholar 

  • Kolar V, Boukal DS (2020) Habitat preferences of the endangered diving beetle Graphoderus bilineatus: implications for conservation management. Insect Conserv Divers. https://doi.org/10.11111/icad.12433

    Article  Google Scholar 

  • Larson DJ (1985) Structure in temperate predaceous diving beetle communities (Coleoptera: Dytiscidae). Ecography 8:18–32

    Google Scholar 

  • Lundkvist E, Landin J, Milberg P (2001) Diving beetle (Dytiscidae) assemblages along environmental gradients in an agricultural landscape in southeastern Sweden. Wetlands 21:48–58

    Google Scholar 

  • Lundkvist E, Landin J, Karlsson F (2002) Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Ann Zool Fenn 39:109–123

    Google Scholar 

  • Mihaljević M, Getz D, Tadić Z, Živanović B, Gucunski D, Topić J, Kalinović I, Mikuska J (1999) Kopački rit Research Survey and Bibliography. Hazu, Zavod za Znanstveni rad u, Osijeku, p 188

    Google Scholar 

  • Molnár A, Csabai Z, Tóthmérész B (2009) Influence of flooding and vegetation patterns on aquatic beetle diversity in a constructed wetland complex. Wetlands 29:1214–1223

    Google Scholar 

  • Nikolić T (2011) Flora Croatica Database. http://hirc.botanic.hr/fcd. Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu

  • Nilsson AN (1996) Coleoptera, introduction. In Nilsson A (ed) Aquatic insects of North Europe. A Taxonomic Handbook Strenstrup. Apollo Books, pp 115–122

  • Nilsson AN, Holmen M (1995) The Aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark: II. Dytiscidae Fauna, Entomologica Scandinavica (No. 32). EJ Brill, Leiden, The Netherlands

  • Nilsson AN, Söderberg H (1996) Abundance and species richness patterns of diving beetles (Coleoptera, Dytiscidae) from exposed and protected sites in 98 northern Swedish lakes. Hydrobiologia 321:83–88

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size metter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Google Scholar 

  • Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. R Documentation, R Foundation for Statistical Computing. http://www.R-project.org

  • Pakulnicka J, Nowakowski JJ (2012) The effect of hydrological connectivity on water beetles fauna in water bodies within the floodplains of a lowland river (Neman river, Belarus). Oceanol Hydrobiol Stud 41(2):7–17

    Google Scholar 

  • Pakulnicka J, Górski A, Bielecki A, Buczyński P, Tończyk G, Cichocka JM (2013) Relationships within aquatic beetle (Coleoptera) communities in the light of ecological theories, Fundamental and Applied Limnology. Arch Hydrobiol 18(3):249–258

    Google Scholar 

  • Pakulnicka J, Górski A, Bielecki A (2015) Environmental factors associated with biodiversity and the occurrence of rare, threatened, thermophilous species of aquatic beetles in the anthropogenic ponds of the Masurian Lake District. Biodivers Conserv 24:429–445

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Sánchez-Fernández D, Abellán P, Velasco J, Millán A (2004) Selecting areas to protect the biodiversity of aquatic ecosystems in a semiarid Mediterranean region. Aquat Conserv Mar Freshw Ecosyst 14:465–479

    Google Scholar 

  • Sánchez-Fernández D, Abellán P, Mellado A, Velasco J, Millán A (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodivers Conserv 15:4507–4520

    Google Scholar 

  • Schmera D, Heino J, Podani J, Erös T, Dolédec S (2017) Functional diversity: a rewiev of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787:27–44

  • Šeric Jelaska L, Temunović M, Durbešic P (2008) Popis vodenih kornjaša podreda Adephaga iz zbirke Entomološkog odjela Gradskog muzeja Varaždin. In: Vargović E, Bregović A (eds.) Zbornik radova sa znanstvenog skupa „Franjo Košcec i njegovo djelo 1882.-1968. Zagreb- Varaždin: HAZU-Zavod za znanstveni rad u Varaždinu, pp 163–172

  • Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85(1):74–79

  • Szivák I, Csabai Z (2012) Are there any differences between taxa groups having distinct ecological traits based on their responses to environmental factors? Aquat Insects 34(1):173–187

    Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (ver. 4.5). Biometris, Wageningen Ceské Budejovice, pp 499

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Google Scholar 

  • Tockner K, Baumgartner C, Schiemer F, Ward JV (2000) Biodiversity of a Danubian floodplain: structural, functional, and compositional aspects. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function, and conservation, vol 1. Backhuys Publishers, Leiden, pp 141–159

    Google Scholar 

  • Turić N, Merdić E, Hackenberger Kutuzović B, Jeličić Ž, Vignjević G, Csabai Z (2012) Structure of aquatic assemblages of Coleoptera and Heteroptera in relation to habitat type and flood dynamic structure. Aquat Insects 34:189–205

    Google Scholar 

  • Turić N, Temunović M, Radović A, Vignjević G, Sudarić Bogojević M, Merdić E (2015) High flood pulses drive the temporal dynamics of assemblages of aquatic insects (Heteroptera and Coleoptera) in a temperate floodplain. Freshw Biol 60(10):2051–2065

    Google Scholar 

  • Turić N, Temunović M, Vignjević G, Antunović Dunić J, Merdić E (2017) A comparasion of methods for sampling aquatic insects (Heteroptera and Coleoptera) of different body sizes, in different habitats using different baits. Euro J Entomol 114:123-132

  • Valladares LF, Garrido J, Garcia-Criado F (2002) The assemblages of aquatic coleoptera from shallow lakes in the northern Iberian Meseta: influence of environmental variables. Eur J Entomol 99:289–298

    Google Scholar 

  • Vamosi JC, Vamosi SM (2007) Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13:1–10

    Google Scholar 

  • Vinnersten TZP, Lundström J, Petersson E, Landin J (2009) Diving beetle assemblages of flooded wetlands in relation to time, wetland type, and Bti-based mosquito control. Hydrobiologia 635:189–203

    Google Scholar 

  • Vrazec A, Pirnat S, Kapla A, Denac D (2008) Zasnova spremljanja stanja populacij izbranih ciljnih vrst hroščev vključno z dopolnitvijo predloga območij za vključitev v omrežje NATURA 2000, Projektna naloga, Končno poročilo, Bioloski Institut Jovana Hadžija ZRC SAZU, Ljubljana, pp 101

  • Ward JV (1992) Aquatic insect ecology 1 Biology and habitat. Wiley, New York

    Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539

    Google Scholar 

  • Wiggins GB, Mackay RJ, Smith IM (1980) Evolutionary and ecological strategies of animals in annual temporary pools. Arch Hydrobiol 58:97–206

    Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches, and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Google Scholar 

  • Yee DA (2010) Behavior and aquatic plants as factors affecting predation by three species of larval predaceous diving beetles (Coleoptera: Dytiscidae). Hydrobiologia 637:33–43

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Stjepan Kemfelja, Krešimir Mikulić, Edin Lugić, Petra Kutleša, Dajana Hmura, and Željko Zahirović for extensive help during fieldworks. Thanks also for the valuable and constructive comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Turić.

Additional information

Communicated by Jens Wolfgang Dauber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turić, N., Temunović, M., Szivák, I. et al. Importance of floodplains for water beetle diversity: a crucial habitat for the endangered beetle Graphoderus bilineatus in Southeastern Europe. Biodivers Conserv 30, 1781–1801 (2021). https://doi.org/10.1007/s10531-021-02168-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02168-w

Keywords

Navigation