Skip to main content
Log in

Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Today, application of in vitro culture by means of slow growth storage of shoot cultures and cryopreservation of organs, tissues and cells in liquid nitrogen presents a remarkable strategic tool to support medium- and long-term conservation of plant genetic resources. Over the last 30 years, considerable progresses have been made in the development of both methods that are currently considered as ex situ conservation strategies, complementary to traditional seed banks and in-field clonal collections. Efficient protocols were developed for the conservation of a large number of crops, including strategically-important vegetables, such as garlic, artichoke, asparagus, cassava, Jerusalem artichoke, mint, potato, sweet potato, chicory, taro, thyme and yam. As a consequence, more than 45,000 accessions of vegetable crops are maintained in 22 genetic resources conservation centers (biobanks), located in 16 countries and 6 continents (Europe, Asia, Africa, Oceania, North and South America). Approximately 4/5 of these accessions are maintained in vitro by means of slow growth storage of shoot cultures, but cryopreservation is also constantly growing, with almost 8300 vegetable accessions being stored in liquid nitrogen at − 196 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ARC:

Agricultural Research Council; South Africa

CAAS:

Chinese Academy of Agricultural Sciences; China

CAES:

Central Agricultural Experiment Station; Japan

CePaCT:

Centre for Pacific Crops and Trees; Republic of Fiji

CIAT:

International Center of Tropical Agriculture; Colombia

CIP:

International Potato Center; Peru

CPRI:

Central Potato Research Institute; India

CRI:

Crop Research Institute; Czech Republic

EMBRAPA:

Brazilian Agricultural Research Corporation; Brazil

ICAR - NBPGR:

National Bureau of Plant Genetic Resources; India

IITA:

International Institute for Tropical Agriculture; Nigeria

InHort:

Research Institute of Horticulture; Poland

IPK:

Leibniz Institute of Plant Genetics and Crop Plant Research; Germany

IRD:

Institut de Recherche pour le Developpement; France (ex-ORSTOM, Office de la Recherche Scientifique et Technique Outre-Mer).

NAC:

National Agrobiodiversity Center; South Korea

NARO:

National Agriculture and Food Research Organization; Japan

NCSS:

National Center of Seed and Seedlings; Japan

NIAS:

National Institute of Agrobiological Sciences; Japan

NICS:

National Institute of Crop Science; South Korea

PFR:

New Zealand Institute of Plant and Food Research; New Zealand

PRI:

Potato Research Institute; Czech Republic

USDA-ARS:

US Department of Agriculture-Agricultural Research Service; United States

USPG:

US Potato Genebank; United States

VIR:

N.I. Vavilov Institute of Plant Genetic Resources; Russia

References

  • Acker JP, Adkins S, Alves A, Horna D, Toll J (2017) Feasibility study for a safety back-up cryopreservation facility. Independent expert report: July 2017. Bioversity International, Rome, 100p. https://www.bioversityinternational.org/e-library/publications/detail/

  • Angel F, Barney VE, Tohme J, Roca WM (1996) Stability of cassava plants at the DNA level after retrieval from 10 years of in vitro storage. Euphytica 90:307–313

    Google Scholar 

  • Arrigoni-Blank MF, Tavares FF, Blank AF, Dos Santos MC, Menezes TSA, De Santana ADD (2014) In vitro conservation of sweet potato genotypes. Sci World J. https://doi.org/10.1155/2014/208506

    Article  Google Scholar 

  • Asiedu R, Sartıe A (2010) Crops that feed the world 1. Yams for income and food security. Food Sec 2:305–315

    Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Bamberg JB, Martin MW, Abad J, Jenderek MM, Tanner J, Donnelly DJ, Nassar AMK, Veilleux RE, Novy RG (2016) In vitro technology at the US Potato Genebank. Vitro Cell Dev Biol-Plant 52:213–225

    Google Scholar 

  • Bazán-Zafra B, Rojas-Idrogo C, Delgado- Paredes GE (2014) In vitro conservation of sweet potato under slow-growth conditions with abscisic acid. J Biol 2(2):25–31

    Google Scholar 

  • Bekheet S, Usama IA (2007) In vitro conservation of globe artichoke (Cynarascolymus L.) germplasm. Int J Agric Biol 9(3):404–407

    Google Scholar 

  • Benelli C, De Carlo A, Previati A, Roncasaglia R (2010) Recenti acquisizioni sulla conservazione in vitro in crescita rallentata. Italus Hortus 17:91

    Google Scholar 

  • Benelli C, Previati A, De Carlo A, Lambardi M (2011) Shoot-tip vitrification protocol for red chicory (Chicoriumintybus L.) lines. Adv Hort Sci 25(1):44–50

    Google Scholar 

  • Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia,Diospyros,Malus,Olea,Prunus,Pyrus and Vitis. Biotech Adv 31:175–185

    CAS  Google Scholar 

  • Benson EE (1995) Cryopreservation of Brassica species. In: Bajaj YPS (ed) Cryopreservation of plant germplasm I. Biotechnology in agriculture and forestry. Springer, Berlin

    Google Scholar 

  • Benson EE, Harding K, Debouck D, Dumet D, Escobar R, Mafla G, Panis B, Panta A, Tay D, Van den Houwe I, Roux N (2011) Refinement and standardization of storage procedures for clonal crops - Global Public Goods Phase 2: Part III. Multi-crop guidelines for developing invitro conservation best practices for clonal crops. System-wide Genetic Resources Programme, Rome

  • Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25(1):51–58

    PubMed  Google Scholar 

  • Cha-um S, Kirdamanee C (2007) Minimal growth in vitro culture for preservation of plant species. Fruit Veg Cereal Sci Biotech 1:13–25

    Google Scholar 

  • Coste A, Şuteu D, Bacila I, Deliu C, Vălimăreanu S, Halmagyi A (2015) Genetic integrity assessment of cryopreserved tomato (Lycopersiconesculentum Mill.) genotypes. Turk J Biol 39:638–648

    CAS  Google Scholar 

  • Danso KE, Ford-Lloyd BV (2011) Cryopreservation of cassava micropropogules using simple slow freezing and vitrification techniques. Biotechnology 10(5):415–420

    CAS  Google Scholar 

  • De Carlo A, Previati A, Benelli C, Da Re F, Giannini M, Lambardi M (2007) Molecular validation of a micropropagation- cryopreservation procedure for red chicory (Cichoriumintybus L.) selected lines. Proceed. “Fundamental aspects of cryopreservation/cryoprotection and genetic stability” - COST Action 871.Oviedo, Spain, 12–14 aprile, pp 56–57.

  • Degras L (1993) The yam: a tropical root crop. The Macmillan Press Ltd, London, p 408

    Google Scholar 

  • Diantina S, Efendi D, Mariska I (2016) Response of two cassava accessions on vitrification and modification of vitrification techniques. AIP Conf Proc 1744:020057. https://doi.org/10.1063/1.4953531

    Article  CAS  Google Scholar 

  • Dimitrova D, Marcheva MP (2009) Maintenance and in vitro conservation of potatoes. Acta Hortic 830:71–76

    Google Scholar 

  • Dussert SN, Chabrillange FA, Engelmann F, Recalt C, Hamon S (1997) Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16:344–348

    CAS  PubMed  Google Scholar 

  • Ebert A, Waqainabete LN (2018) Conserving and sharing taro genetic resources for the benefit of global taro cultivation: a core contribution of the centre for pacific crops and trees. Biopreserv Biobank 16(5):361–367. https://doi.org/10.1089/bio.2018.0017

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis D, Skogerboe D, Hellier B, Volk G (2006) Implementation of garlic cryopreservation techniques in the national plant germplasm system. CryoLetters 27:99–106

    PubMed  Google Scholar 

  • Ellis D, Salas A, Chavez O, Gomez R, Anglin N (2020) Ex Situ Conservation of Potato [Solanum Section Petota (Solanaceae)] Genetic Resources in Genebanks. In: Campos H, Ortiz O (eds) The potato crop. Springer, Cham

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57(3):227–243

    Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLetters 11:413–426

    Google Scholar 

  • Faltus M, Zamecnik J, Domkarova J, Kreuz L, Horackova V (2011) First conservation of potato germplasm in the Czech Republic. Acta Hortic 908:405–412

    CAS  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAO (2018) Food outlook. FAO, Rome

    Google Scholar 

  • FAOSTAT (2017) Faostat Fao Statistics Division. https://www.fao.org/faostat/en/#data/QC accessed 2 March 2020

  • Gavrilenko T (2008) Ex situ conservation of plant genetic resources in Russia: history, current status and perspectives. In: Laamanen J, Uosukainen M, Häggman H, Nukari A, Rantala S (eds) Cryopreservation of cropspecies in Europe. CRYOPLANET COST Action 871 Oulu, Finland, 20th–23rd of February 2008. 67–69. Natural Resources Institute, Finland, https://jukuri.luke.fi/handle/10024/473526?show=full

  • George EF (1996) Plant propagation by tissue culture. Part 2. Exegetics, Edington

    Google Scholar 

  • Golmirzaie A, Toledo J (1998) In vitro conservation of potato and sweet potato germplasm. CIP program report, Perù, pp 351–356

    Google Scholar 

  • Gopal J, Chauhan NS (2010) Slow growth in vitro conservation of potato germplasm at low temperature. Potato Res 53:141–149

    Google Scholar 

  • Gopal J, Chamail A, Sarkar D (2002) Slow-growth in vitro conservation of potato germplasm at normal propagation temperature. Potato Res 45:203–213

    Google Scholar 

  • Gopal J, Chamail A, Sarkar D (2004) In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. Vitro Cell Dev Biol-Plant 40:485–490

    CAS  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, non-freezing temperatures: proteins, metabolism and acclimation. Ann Rev Plant Physiol 33:347–372

    CAS  Google Scholar 

  • Halmagyi A, Deliu C, Coste A (2005) Plant regrowth from potato shoot tips cryopreserved by a combined vitrification-droplet method. CryoLetters 26:313–322

    CAS  PubMed  Google Scholar 

  • Hanson J (1986) Methods of storing tropical root crop germplasm with special reference to yam. FAO/IBPGR Plant Genet Res Newslett 64:24–32

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Hassan NA, El-Halwagi AA, Gaber A, El-Awady M, Klalaf A (2007) Slow-growth in vitro conservation of garlic cultivars grown in Egypt: chemical characterization and molecular evaluation. Glob J Mol Sci 2:65–75

    Google Scholar 

  • Hershey C (2008) A global conservation strategy for cassava (Manihotesculenta) and wild Manihot species. Summary of stakeholder deliberations and recommendations prepared for the Global Crop Diversity Trust. https://isa.ciat.cgiar.org/urg/urgweb_folder/files/unitfiles/A%2520Global%2520Conservation%2520Strategy%2520for%2520Manihot%2520%2520August%25202008-2.pdf

  • Hirai D, Sakai A (2003) Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21:961–966

    CAS  PubMed  Google Scholar 

  • Islam MT, Leunufna S, Dembele DP, Keller ERJ (2003) In vitro conservation of four mint (Mentha spp.) accesssions. Plant Tissue Cult 13(1):37–46

    Google Scholar 

  • Islam MT, Dembele DP, Keller ERJ (2005) Influence of explant, temperature and different culture vessels on invitro culture for germplasm maintenance of four mint accessions. Plant Cell Tissue Org Cult 81:123–130

    Google Scholar 

  • Jenderek MM, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA national plant germplasm system. Vitro Cell Dev Biol-Plant 53(4):299–308

    CAS  Google Scholar 

  • Kaczmarczyk A, Rokka V, Keller ERJ (2011) Potato shoot tip cryopreservation. A review. Potato Res 54:45–79

    Google Scholar 

  • Kästner U, Klahr A, Keller ERJ, Kahane R (2001) Formation of onion bulblets in vitro and viability during medium-term storage. Plant Cell Rep 20:137–142

    PubMed  Google Scholar 

  • Keller ERJ (2005) Improvement of cryopreservation results in garlic using low temperature preculture and high-quality in vitro plantlets. CryoLetters 26:357–366

    PubMed  Google Scholar 

  • Keller ERJ, Senula A (2002) Experience of in vitro storage and cryopreservation of Allium at IPK, Gatersleben, Germany. In: Maggioni L, Keller J, Astley D (eds) European collections of vegetatively propagated Allium. Report of a Workshop, 21–22 May 2001, Gatersleben, Germany. IPGRI, Rome, pp 75–77

  • Keller ERJ, Senula A (2016) Recent aspects of Allium cryopreservation in the federal German genebank. Acta Hortic 1143:35–44

    Google Scholar 

  • Keller ERJ, Senula A, Leunufna S, Grube M (2006) Slow growth storage and cryopreservation-tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int J Refrig 29:411–417

    Google Scholar 

  • Keller ERJ, Senula A, Zanke C (2011) Alliaceae in cryopreservation, achievements and constraints. Acta Hortic 908:495–508

    CAS  Google Scholar 

  • Kim HH, Lee JK, Yoon JW, Ji JJ, Nam SS, Hwang HS, Cho EG, Engelmann F (2006) Cryopreservation of garlic bulbil primordia by the droplet-vitrification procedure. CryoLetters 27:143–153

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee JK, Hwang HS, Engelmann F (2007) Cryopreservation of garlic germplasm collections using the droplet-vitrification technique. CryoLetters 28:471–481

    CAS  PubMed  Google Scholar 

  • Koo B, Pardey P, Wright B (2003) The price of conserving agricultural biodiversity. Nat Biotechnol 21:126–128

    CAS  PubMed  Google Scholar 

  • Kulus D (2018) Genetic resources and selected conservation methods of tomato. J Appl Bot Food Qual 91:135–144

    Google Scholar 

  • Kulus D (2019) Managing plant genetic resources using low and ultra-low temperature storage: a case study of tomato. Biodivers Conserv 28:1003–1027

    Google Scholar 

  • Kulus D (2020) Shoot tip cryopreservation of Lamprocapnosspectabilis (L.) Fukuhara using different approaches and evaluation of stability on the molecular, biochemical, and plant architecture levels. Int J Mol Sci 21(11):3901

    CAS  PubMed Central  Google Scholar 

  • Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Ac Pub, Dordrecht, pp 815–840

    Google Scholar 

  • Lambardi M, Ozudogru EA (2013) Advances in the safe storage of micropropagated woody plants at low temperature. Acta Hortic 988:29–42

    Google Scholar 

  • Lambardi M, Shaarawi S (2017) Importance of in vitro culture for developing cryopreservation strategies of woody plants. Acta Hortic 1187:177–188

    Google Scholar 

  • Lambardi M, Benelli C, De Carlo A, Previati A, Da Re F, Giannini M (2006) Biotechnologies for the preservation of selected red chicory (Cichoriumintybus) lines. Acta Hortic 725:311–318

    CAS  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    CAS  PubMed  Google Scholar 

  • Lozano JV, Nolt BL (1989) Pest and pathogens of cassava. In: Kahn RP (ed) Plant protection and quarantine. Vol. 2, Selected pests and pathogens of quarantine significance. CRC Press Inc., Boca Raton, pp 169–182

    Google Scholar 

  • Luyet BJ (1937) The vitrification of organic colloids and of protoplasm. Biodynamica 1:1–14

    Google Scholar 

  • Mafla G, Roa JC, Guevara CL (2000) Advances on the in vitro growth control of cassava, using silver nitrate. In: Carvalho L, Thro AM, Vilarinhos AD (eds) Cassava biotechnology. Empresas Brasileiras de Pesquisa Agropecuaria, Brasilia, pp 439–446

    Google Scholar 

  • Malaurie B, Pungu O, Dumont R, Trouslot MF (1993) The creation of an invitro germplasm collection of yam (Dioscorea spp.) for genetic resources preservation. Euphytica 65:113–122

    Google Scholar 

  • Malaurie B, Trouslot MF, Berthaud J, Bousalem M, Pinel A, Dubern J (1998) Medium-term and long-term in vitro conservation and safe international exchange of yam (Dioscorea spp.) germplasm. Electr J Biotech 1(3):103–117

    Google Scholar 

  • Marco-Medina A, Casas JL (2012) Polyamine content during minimal growth storage of Thymusmoroderi explants. Biol Plant 56(3):590–594

    CAS  Google Scholar 

  • Martin C, González-Benito E (2005) Survival and genetic stability of Dendrathemagrandiflora Tzvelev shoot after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289

    CAS  PubMed  Google Scholar 

  • Martin C, Senula A, Gonzalez I, Acosta A, Keller ERJ, Gonzalez-Benito ME (2013) Genetic identity of three mint accessions stored by different conservation procedures: field collection, in vitro and cryopreservation. Genet Resour Crop Evol 60:243–249

    Google Scholar 

  • Mazur J (1964) Investigation on austenite and marensite subjected to very low temperatures. Cryogenics 4:36–38

    CAS  Google Scholar 

  • Mix G (1982) In vitro preservation of potato material. Plant Genet Resour Newsl 51:6–8

    Google Scholar 

  • Mix-Wagner G, Conner AJ, Cross RJ (2000) Survival and recovery of asparagus shoot tips after cryopreservation using the ‘droplet’ method. NZJ Crop Hortic Sci 28:283–287

    Google Scholar 

  • Morone Fortunato I, Ruta C, Castrignanò A, Saccardo F (2005) The effect of mycorrhizal symbiosis on the development of micropropagated artichokes. Sci Hortic 106:472–483

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Mycock DJ, Blakeway FC, Watt MP (2004) General applicability of invitro storage technology to the conservation and maintenance of plant germplasm. South Afr J Bot 70(1):31–36

    Google Scholar 

  • Myeza PN, Visser A (2013) Agricultural Research Council's Potato in Vitro Genebank. Acta Hort 1007:727–731

    Google Scholar 

  • Niino T, Valle Arizaga M (2015) Cryopreservation for preservation of potato genetic resources. Breed Sci 65:41–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of Asparagusofficinalis L. embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    CAS  Google Scholar 

  • Normah MN, Chin HF, Reed BM (2013) Conservation of tropical plant species. Springer Publication, New York, p 538

    Google Scholar 

  • Opabode JT, Olufemi VA, Oyelakin OO, Akinyemiju OA (2016) Somatic embryogenesis and genetic uniformity of cassava plants regenerated from secondary somatic cotyledons preserved in osmotic agents. Plant Cell Tissue Org Cult 26(1):47–54

    Google Scholar 

  • Oseni OM, Pande V, Nailwal TK (2018) A review on plant tissue culture, a technique for propagation and conservation of endangered plant species. Int J Curr Microbiol App Sci 7(7):3778–3786

    Google Scholar 

  • Ozudogru EA, Kaya E (2012) Cryopreservation of Thymuscariensis and T.vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33:363–375

    CAS  PubMed  Google Scholar 

  • Ozudogru EA, Lambardi M (2016) Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. In: Germanà MA, Lambardi M (eds) In Vitro Embryogenesis in higher plants. Humana Press-Springer, New York, pp 537–550

    Google Scholar 

  • Ozudogru EA, Kaya E, Kirdok E (2011) Development of protocols for short-, medium and long-term conservation of thyme. Acta Hortic 918:43–50

    CAS  Google Scholar 

  • Pandey R, Sharma N, Agrawal A, Gupta S, Jain A, Tyagi RK (2015) Invitro conservation and cryopreservation of vegetatively propagated crop germplasm. In: Jacob SR, Singh N, Srinivasan K, Gupta V, Radhamani J, Kak A, Pandey C, Pandey S, Aravind J, Bisht IS, Tyagi RK (eds) Management of plant genetic resources. National Bureau of Plant Genetic Resources, New Delhi, pp 197–204

    Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78

    Google Scholar 

  • Panta A, Panis B, Ynouye C, Swennen R, Roca W (2014) Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters 35:255–266

    CAS  PubMed  Google Scholar 

  • Panta A, Panis B, Ynouye C, Swennen R, Roca W, Tay D, Ellis D (2015) Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell Tiss Org Cult 120:117–125

    CAS  Google Scholar 

  • Pardo A, Rivero S, Alvarado G (2014) Conservacion in vitro de microbulbos de ajo (Alliumsativum L). Bioagro 26(2):115–122

    Google Scholar 

  • Park SU, Kim HH (2015) Cryopreservation of sweet potato shoot tips using a droplet-vitrification procedure. CryoLetters 36:344–352

    CAS  PubMed  Google Scholar 

  • Pathirana R, Mathew L, Jibran R, Hunter DA, Morgan ER (2019) Cryopreservation and cryotherapy research on horticultural crops in New Zealand. Acta Hortic 1234:29–36

    Google Scholar 

  • Pearce RS (2004) Adaptation of higher plants to freezing. In: Fuller BJ, Lane NJ, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 171–204

    Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoeabatata (L.) Lam.] by vitrification. Plant Cell Rep 19:733–737

    CAS  PubMed  Google Scholar 

  • Pimm SL, Raven PH (2017) The fate of the world’s plants. Trends Ecol Evol 32(5):317–320

    PubMed  Google Scholar 

  • Previati A, Benelli C (2009) La micropropagazione di specie orticole: stato attuale e prospettive. Italus Hortus 16(2):37–43

    Google Scholar 

  • Reed BM, Uchendu EE (2008) Controlled rate cooling. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 77–89

    Google Scholar 

  • Romadanova N, Kushnarenko S, Karasholakova L (2017) Development of a common PVS2 vitrification method for cryopreservation of several fruit and vegetable crops. Vitro Cell Dev Biol Plant 53:382–393

    Google Scholar 

  • Ruta C, Tagarelli A, De Mastro G (2016) Micropropagazione e conservazione del germoplasma di Cynaracardunculus var. scolymus (L.). Abstract Book “XI Convegno Nazionale sulla Biodiversità”, June 9–10, Matera, Italy, p 100.

  • Ruta C, Tagarelli A, De Mastro G (2017) Invitro propagation of Cichoriumintybus L., Catalogna group, as a tool for the valorization and conservation of local genetic resources. Abstract Book “7th International Symposium on Production and Establishment of Micropropagated Plants - ISHS”, April 24–28, Lavras, Brazil, p 88.

  • Sakai A (1960) Survival of the twig of woody plants at -196°C. Nature 185:392–394

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation vitrification and droplet-vitrification: A review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nuclear cells of navel orange (Citrussinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    CAS  PubMed  Google Scholar 

  • Sarkar D, Chakrabarti SK, Naik PS (2001) Slow-growth conservation of potato microplants: efficacy of ancymidol for long-term storage in vitro. Euphytica 117:133–142

    CAS  Google Scholar 

  • Sarkar D, Sud CK, Chakrabarti SK, Naik PS (2002) Growing of potato microplants in the presence of alginate-silverthiosulfate capsules reduces ethylene-induced culture abnormalities during minimal growth conservation in vitro. Plant Cell Tiss Org Cult 68:79–89

    CAS  Google Scholar 

  • Schäfer-Menuhr A, Schumacher HM, Mix-Wagner G (1997) Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genet Resour Newsl 111:19–24

    Google Scholar 

  • Sedami AB, Todjro CGH, Justine DS, Arnaud A, Lionel MA, Clement A, Corneille A (2017) Effects of activated charcoal on medium-term conservation of yam (Dioscorea spp.) cultivated in Benin. Afr J Biotech 16(15):819–825

    CAS  Google Scholar 

  • Senula A, Keller J, Sanduijav T, Yohannes T (2007) Cryopreservation of cold-acclimated mint (Mentha spp.) shoot tips using a simple vitrification protocol. CryoLetters 28:1–12

    PubMed  Google Scholar 

  • Sharma DK, Sharma T (2013) Biotechnological approaches for biodiversity conservation. Indian J Sci Res 4(1):183–186

    Google Scholar 

  • Standardi A, Micheli M (2013) Encapsulation of in vitro-derived explants: an innovative tool for nurseries. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Springer, New York, pp 397–418

    Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell. Am J Bot 45(10):705–708

    Google Scholar 

  • Taglienti A, Tiberini A, Barba M (2013) Cryotherapy: a new tool for the elimination of artichoke viruses. J Plant Pathol 95(3):597–602

    Google Scholar 

  • Tavazza R, Lucioli A, Benelli C, Giorgi D, D’Aloisio E, Papacchioli V (2013) Cryopreservation in artichoke: towards a phytosanitary qualified germplasm collection. Ann Appl Biol 163:231–241

    CAS  Google Scholar 

  • Tavazza R, Rey NA, Papacchioli V, Pagnotta MA (2015) A validated slow-growth invitro conservation protocol for globe artichoke germplasm: a cost-effective tool to preserve from wild to elite genotypes. Sci Hortic 197:135–143

    Google Scholar 

  • Taylor MJ, Song YC, Brockbank KGM (2004) Vitrification in tissue preservation: new developments. In: Fuller BJ, Lane NJ, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 603–642

    Google Scholar 

  • Uchendu EE, Reed BM (2008) A comparative study of three cryopreservation protocols for effective storage of invitro-grown mint (Mentha spp.). CryoLetters 29:181–188

    PubMed  Google Scholar 

  • Uchendu EE, Shukla M, Saxena PK, Keller JER (2016) Cryopreservation of potato microtubers: the critical roles of sucrose and desiccation. Plant Cell Tiss Org Cult 124:649–656

    CAS  Google Scholar 

  • Unnikrishnan M, Easwari Amma CS, Sreekumari MT, Sheela MN, Mohan C (2002) Cassava germplasm conservation and improvement in India. In: Howeler, R.H. (Ed.), Proceedings “7th Regional Workshop”, October 28–November 1, Bangkok, pp 87–91.

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagusofficinalis L. grown in vitro. Plant Cell Rep 9(6):328–331

    CAS  PubMed  Google Scholar 

  • Valle Arizaga M, Villalobos Navarro OF, Castillo Martinez CR, Cruz Gutiérrez EJ, López Delgado HA, Yamamoto SI, Watanabe K, Niino T (2017) Improvement to the D cryo-plate protocol applied to practical cryopreservation of invitro grown potato shoot tips. Hort J 86(2):222–228

    Google Scholar 

  • Vandenbussche B, Demeulemeester M, De Proft M (2002) Cryopreservation of Chicoriumintybus L. var. foliosum (Chicory). In: Towill LE, Bajaj PS (eds) Cryopreservation of plant germplasm II. Springer, Berlin, pp 78–95

    Google Scholar 

  • Vettorazzi Gobbi R, Carvalho Silva V, Pombo Sudré C, Rodrigues R (2017) Developing an invitro optimized protocol to sweet potato landraces conservation. Acta Scientiarum Agron 39(3):359–367

    Google Scholar 

  • Volk GM (2010) Application of functional genomics and proteomics to plant cryopreservation. Curr Genomics 11:24–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volk GM, Maness N, Rotind K (2004) Cryopreservation of garlic (Alliumsativum L.) using plant vitrification solution 2. CryoLetters 25:219–226

    CAS  PubMed  Google Scholar 

  • Vollmer R, Villagaray R, Egúsquiza V, Espirilla J, García M, Torres A, Rojas E, Panta A, Barkley NA, Ellis D (2016) The potato cryobank at the international potato center (CIP): a model for long term conservation of clonal plant genetic resources collections of the future. CryoLetters 37:318–329

    CAS  PubMed  Google Scholar 

  • Wang QC, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009) Cryotherapy of shoot tips: a technique for pathogen eradication and cryopreservation of healthy plant genetic resources. Ann Appl Biol 154:351–363

    Google Scholar 

  • Wang MR, Lambardi M, Engelmann F, Pathirana R, Panis B, Volk GM, Wang QC (2020) Advances in shoot tip cryopreservation techniques and the use of alternative invitro derived explants. Plant Cell Tiss Org Cult (online first). https://doi.org/10.1007/s11240-020-01770-0

    Article  Google Scholar 

  • Wesley-Smıth J, Walters C, Pammenter NW, Berjak P (2015) Why is intracellular ice lethal? A Microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acersaccharinum. Ann Bot 115(6):991–1000

    PubMed  PubMed Central  Google Scholar 

  • Westcott RJ (1981) Tissue culture storage of potato germplasm. 2. Use of growth retardants. Potato Res 24:343–352

    CAS  Google Scholar 

  • Xu P, Ya C, Yan CY (2005) Biotechnology applied to garlic and onion. Acta Hortic 688:59–75

    CAS  Google Scholar 

  • Yamamoto S, Rafique T, Fukui K, Sekizawa K, Niino T (2012) V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. CryoLetters 33:12–23

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Wunna Rafique T, Valle Arizaga M, Fukui K, Cruz Gutierrez E, Castillo Martinez C, Watanabe K, Niino T (2015) The aluminum cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. Am J Potato Res 92:250–257

    Google Scholar 

  • Yi JY, Lee GA, Lee YY, Gwag JG, Son EH, Park HJ (2016) Cryopreservation of in vitro grown shoot tips of sweet potato (Ipomoeabatatas L.) by the encapsulation-vitrification method. Korean J Plant Res 29(6):635–641

    Google Scholar 

Download references

Acknowledgements

The contribution of Claudia Ruta as part of the project "Biodiversity of horticultural species of Puglia (BiodiverSO)" - intervention funded by the European Union under Measure 10.2.1 PSR Puglia 2014-2020, "Projects for the conservation and enhancement of genetic resources in agriculture". The contribution of Maurizio Lambardi as part of the “International Treaty on Plant Genetic Resources for Food and Agriculture - RGV-FAO, 2020-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Lambardi.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Ex-situ conservation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruta, C., Lambardi, M. & Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodivers Conserv 29, 3495–3532 (2020). https://doi.org/10.1007/s10531-020-02051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-02051-0

Keywords

Navigation