Skip to main content
Log in

Industrial and post-industrial habitats serve as critical refugia for pioneer species of newly identified arthropod assemblages associated with reed galls

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Gravel-sand river terraces were nearly eliminated from central European landscape by river channelization. Monotypic stands of common reed (Phragmites australis) growing on such terraces are often stressed by drought, which makes them vulnerable to Lipara spp. (Diptera: Chloropidae) gallmakers. Although Lipara are considered ecosystem engineers, only fragmentary information is available on the biology of their parasitoids and inquilines. We analyzed the assemblages of arthropods (Arachnida, Collembola, Dermaptera, Psocoptera, Thysanoptera, Hemiptera, Raphidioptera, Neuroptera, Coleoptera, Diptera, Lepidoptera and Hymenoptera) that emerged from 17,791 Lipara-induced galls collected in winter from 30 reed beds in the Czech Republic, 15 of which were situated at (post)industrial sites (gravel-sandpits, tailing ponds, limestone quarries, colliery dumps, and reclaimed lignite open-cast mines) and 15 were in near-natural habitats (medieval fishponds, and river and stream floodplains). The Chao-1 estimator indicated 229.3 ± 18.1 species in reed galls at (post)industrial and 218.1 ± 23.6 species at near-natural sites, with the Sørensen index reaching only 0.58. We identified 18 red-listed species and four new species for the Czech Republic (Gasteruption phragmiticola, Echthrodelphax fairchildii, Haplogonatopus oratorius and Enclisis sp.), representing mostly obligate (64 %) or facultative (9 %) reed specialists. We propose that Lipara gall-associated assemblages undergo a long-term cyclic ecological succession. During first 10 years after reed bed formation, only Lipara spp. and several other species occur. During next decades, the reed beds host species-rich assemblages with numerous pioneer species (Singa nitidula, Polemochartus melas) that critically depend on presence of prior disturbances. Middle-aged reed beds (near medieval fishponds) are prevalently enriched in common species only (Oulema duftschmidi, Dimorphopterus spinolae). Habitats with the longest historical continuity (river floodplains) host again species-rich assemblages with several rare species that probably require long-term habitat continuity (Homalura tarsata, Hylaeus moricei). Landscape dynamics is thus critical for the persistence of a full spectrum of reed gall inquilines, with (post)industrials serving as the only refugia for pioneer species ousted from their key nesting habitats at once cyclically disturbed gravel-sand river terraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. G. omoeda is considered a species of mountain spruce forests but emerged from reed galls collected in/near an Alnus glutinosa forest in the Mesophyticum.

  2. These included, e.g., Hypsosinga albovittata, which is a xerothermic species that emerged from reed galls collected at a pine bog and peat meadows with interspersed reed stands in the Mesophyticum.

  3. Some of the dominant spider species were hitherto considered infrequent, with a very limited number of records. For S. nitidula, only a single record was known, e.g., for South Bohemia, from where we obtained 21 individuals from five of the seven sampling sites examined in this region.

  4. First record of Dimorphopterus spinolae for Bohemia: 1F: Bohdanečský fishpond, Lázně Bohdaneč, PU, 28 January 2013. However, this species is common at numerous sites in Moravia and abroad, where it mainly feeds on Calamagrostis epigejos (Wachmann et al. 2007). It causes large-scale damage to reed beds in China, and was even treated with insecticides to suppress its effects (Schaefer and Panizzi 2000).

  5. Males of O. melanopus were approximately 10× more abundant than males of O. duftschmidi. Females of these two species were 1.9× more abundant than males at both types of sampling sites (27/10 vs. 70/6 of females) but were indistinguishable from each other.

  6. The new species for the Czech Republic included Gasteruption phragmiticola (1 ex.: fishpond Baroch, Hrobice, PU, 28 January 2013, 1 ex.: Knovízský stream, Olovnice, ME, 16 February 2013, 1 ex.: disused ash/slag deposit of the lignite power station Triangl, Olešník, CB, 16 March 2013), Enclisis sp. (1 ex.: fishpond Proudnice, Žíželice-Hradištko, KO, 25 January 2013), Haplogonatopus oratorius (1 ex.: sandpit Dobříň, LT, 2 February 2013) and Echthrodelphax fairchildii (1 ex.: sandpit Dobříň, LT, 2 February 2013, 2 ex.: spoil heap Mariánské Radčice, MO, 3 February 2013, 1 ex.: spoil heap Pokrok, Duchcov, TE, 3 February 2013, 1 ex.: gravel-sandpit Vojkovice, ME, 17 February 2013).

  7. Nartshuk (2006) questioned the association of Centrodora amoena (Aphelinidae) with their Lipara hosts proposed by Fulmek (1968), with Orthoptera serving as the only confirmed hosts. In our material from Lipara-induced galls, Centrodora amoena was a dominant species (628 individuals emerged), with Orthoptera completely absent in the examined dataset. Therefore, it is likely that the initial observation by Fulmek was correct.

  8. Aprostocetus orithyia and A. gratus were reported as specialized parasites of Giraudiella inclusa by Tscharntke et al. (1991), who also questioned the previous record of A. orithyia association with Lipara lucens (Graham 1987) and questioned all of the other host records of A. gratus (which was never associated with Lipara flies or any other dipterans reported in our study). In particular, A. orithyia was a dominant species in our dataset (410 individuals emerged). Although our materials contained hundreds of potential cecidomyid hosts, it is important to note that all of this material originated from the microhabitat (galls) that was induced exclusively by Lipara flies. Therefore, Graham was probably correct when reporting it from Lipara galls, but it remains to be tested whether the Lipara spp. themselves can host these two species.

References

  • Allan E, Bossdorf O, Dormann CF et al (2014) Interannual variation in land-use intensity enhances grassland multidiversity. Proc Natl Acad Sci USA 111:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athen O, Tscharntke T (1999) Insect communities of Phragmites habitats used for sewage purification: effects of age and area of habitats on species richness and herbivore–parasitoid interactions. Limnologica 29:71–74

    Article  Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems—the ecological basis for conservative management. For Ecol Manag 63:247–300

    Article  Google Scholar 

  • Baldi A, Moskat C (1995) Effect of reed burning and cutting on breeding bird communities. In: Bisonette JA, Krausman PR (eds) Integrating people and wildlife for a sustainable future. The Wildlife Society, Bethesda, pp 637–642

    Google Scholar 

  • Bordera S, Hernández-Rodríguez E (2003) Description of two new species of Enclisis (Hymenoptera: Ichneumonidae) and support for the secretory role of tyloids in ichneumonid males. Eur J Entomol 100:401–409

    Article  Google Scholar 

  • Cameron KH, Leather SR (2012) How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness? Biodivers Conserv 21:763–779

    Article  Google Scholar 

  • Canavan K, Paterson I, Hill MP (2014) The herbivorous arthropods associated with the invasive alien plant, Arundo donax, and the native analogous plant, Phragmites australis, in the Free State province, South Africa. Afr Entomol 22:454–459

    Article  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B 345:101–118

    Article  CAS  Google Scholar 

  • Cowie N, Sutherland WJ, Ditlhogo MKM, James R (1992) The effects of conservation management of reed beds. II. The flora and litter disappearance. J Appl Ecol 29:277–284

    Article  Google Scholar 

  • Čurn V, Kubátová B, Vávřová P, Křiváčková-Suchá O, Čížková H (2007) Phenotypic and genotypic variation of Phragmites australis: comparison of populations in two human-made lakes of different age and history. Aquat Bot 86:321–330

    Article  Google Scholar 

  • De Bruyn L (1994) Life history strategies of three gall-forming flies tied to natural variation in growth of Phragmites australis. USDA Forest Service, General Technical Report NC-174, pp 56–72

  • Decleer K (1988) Temporary inundation as a determining factor for the spider communities of marshland habitats. Comptes Rendus du XIème Colloque d’Arachnologie (Colloque international européen). Technische Universität, Berlin, pp 161–167

    Google Scholar 

  • Decleer K (1990) Experimental cutting of reed marsh vegetation and its influence on the spider (Araneae) fauna in the Blankaart Nature Reserve, Belgium. Biol Conserv 52:161–185

    Article  Google Scholar 

  • Dely-Draskovits Á, Papp J, Thuróczy C, Vásárhelyi T (1994) Hymenoptera species in Lipara galls (Diptera, Chloropidae) in Hungary. Folia Entomol Hung 55:65–91

    Google Scholar 

  • Dennis RLH, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:12–26

    Article  Google Scholar 

  • Dill W (1937) Der Entwicklungsgang der Mehligen Pflaumenblattlaus Hyalopterus arundinis Fabr. im schweizerischen Mittelland. Dissertation, Entomologisches Institut, ETH Zürich

  • Ditlhogo MKM, James R, Laurence BR, Sutherland WJ (1992) The effects of conservation management of reed beds. I. The invertebrates. J Appl Ecol 29:265–276

    Article  Google Scholar 

  • Duelli P, Obrist MK (1998) In search of the best correlates for local organismal biodiversity in cultivated areas. Biodivers Conserv 7:297–309

    Article  Google Scholar 

  • Farkač J, Král D, Škorpík M (eds) (2005) Red List of threatened species in the Czech Republic: invertebrates. AOPK ČR, Prague

    Google Scholar 

  • Fisher TW, Bellows TS, Caltagirone LE, Dahlsten DL, Huffaker CB, Gordh G (1999) Handbook of biological control: principles and applications of biological control. Academic, San Diego

    Google Scholar 

  • Fulmek L (1968) Parasiten der Insektgallen Europas. Beitr Entomol 18:719–959

    Google Scholar 

  • Giraud J (1863) Mémoire sur les Insectes qui vivent sur le Roseau commun, Phragmites communis Trin. (Arundo phragmites L.) et plus spécialement sur ceux de l`ordre des Hyménoptères. Verh Zool bot Ges Wien 13:1251–1288

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Graham MWR de V (1987) A reclassification of the European Tetrastichinae (Hymenoptera: Eulophidae), with a revision of certain genera. Bull Br Mus Nat Hist 55:1–392

    Google Scholar 

  • Grochowska M (2008) Morphology of preimaginal stages of Cryptonevra diadema (Meigen, 1830) (Diptera, Chloropidae)—an inquiline in galls formed by Lipara flies on common reed (Phragmites australis (Cav.) Trin.). Dtsch Entomol Z 55:129–135

    Article  Google Scholar 

  • Gudkov DI, Uzhevskaya SF, Nazarov AB, Kolodochka LA, Dyachenko TN, Shevtsova NL (2006) Lesion in common reed by gall-producing arthropods in water bodies of the Chernobyl NPP exclusion zone. Hydrobiol J 42:82–88

    Article  Google Scholar 

  • Guglielmino A, Olmi M (1997) A host–parasite catalog of world Dryinidae (Hymenoptera: Chrysidoidea). Contrib Entomol Int 2:165–298

    Google Scholar 

  • Guglielmino A, Olmi M (2006) A host–parasite catalog of world Dryinidae (Hymenoptera: Chrysidoidea): first supplement. Zootaxa 1139:35–62

    Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hawke CJ, José PV (1996) Reedbed management for commercial and wildlife interest. RSPB, Bedfordshire

    Google Scholar 

  • Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161:40–49

    Article  PubMed  Google Scholar 

  • He J, Xu Z (2002) Hymenoptera Dryinidae. Fauna Sinica, 29. Science Press, Beijing

    Google Scholar 

  • Heneberg P, Bogusch P, Řehounek J (2013) Sandpits provide critical refuge for bees and wasps (Hymenoptera: Apocrita). J Insect Conserv 17:473–490

    Article  Google Scholar 

  • Heneberg P, Bogusch P, Astapenková A (2014) Reed galls serve as an underestimated but critically important resource for an assemblage of aculeate hymenopterans. Biol Conserv 172:146–154

    Article  Google Scholar 

  • Holec M (2000) Spiders (Araneae) of the fishpond eulittoral zone. Ekológia (Bratisl) 19(Suppl. 4):51–54

    Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  CAS  PubMed  Google Scholar 

  • Kasparjan DP (1981) 27. Otriad Hymenoptera – Perepontshatokrylye Semeistvo Ichneumonidae – Ichneumonidi. Opredelitel nasekomyh evropeyskoy chasti SSSR, vol 3. Nauka, Leningrad

    Google Scholar 

  • Kocarek P, Holusa J, Vidlicka L (2005) Blattaria, Mantodea, Orthoptera and Dermaptera of the Czech and Slovak Republics. Kabourek, Zlín

    Google Scholar 

  • Lawton JH, Bignell DE, Bolton B et al (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    Article  CAS  Google Scholar 

  • Lelong B, Lavoie C, Theriault M (2009) What are the factors that facilitate the implementation of the common reed (Phragmites australis) along roads in Southern Quebec? Ecoscience 16:224–237

    Article  Google Scholar 

  • MacDonald PL, Gardner RC (2000) Type I error rate comparisons of post hoc procedures for I × J Chi square tables. Educ Psychol Meas 60:735–754

    Article  Google Scholar 

  • Macek J, Straka J, Bogusch P, Dvořák L, Bezděčka P, Tyrner P (2010) Blanokřídlí České republiky. I. Žahadloví. Academia, Prague

    Google Scholar 

  • Manning P, Gossner MM, Bossdorf O et al (2015) Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96:1492–1501

    Article  Google Scholar 

  • Nagy C (1967) Contribution l’etude de la fam. Dryinidae (Hym.) dans la faune de la Roumanie. Trav Mus Hist Nat Grigore Antipa 7:331–337

    Google Scholar 

  • Narchuk EP, Kanmiya K (1996) A new species of gall producing chloropid flies of the genus Lipara Meigen (Diptera, Chloropidae) distinguished by the acoustic signals. Entomol Rev Entomol Obozr 76:872–878

    Google Scholar 

  • Nartshuk EP (2006) Parasites of grass flies (Diptera, Chloropidae) from the order Hymenoptera in the Holarctic region. Entomol Rev 86:576–597

    Article  Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2015) Spiders of Europe. http://www.araneae.unibe.ch. Accessed 5 Dec 2015

  • Nickel H, Hildebrandt J (2003) Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hymenoptera)—a case study from the Elbe flood plains (northern Germany). Agric Ecosyst Environ 98:183–199

    Article  Google Scholar 

  • Nickel H, Holzinger WE, Wachmann E (2002) Mitteleuropaische Lebensraume und ihre Zikadenfauna (Hemiptera: Auchenorrhyncha). Denisia 4:279–328

    Google Scholar 

  • Oertli S, Müller A, Steiner D, Breitenstein A, Dorn S (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biol Conserv 126:195–205

    Article  Google Scholar 

  • Olmi M (1984) A revision of the Dryinidae (Hymenoptera). Mem Am Entomol Inst 37:I–XII+1–1913

    Google Scholar 

  • Olmi M (1999) Hymenoptera Dryinidae–Embolemidae. Fauna d’Italia, 37. Edizioni Calderini, Bologna

    Google Scholar 

  • Pickett STA (1989) Space for time substitution as an alternative for long studies. In: Likens EG (ed) Long-term studies in ecology: approaches and alternatives. Springer, Berlin, pp 112–135

    Google Scholar 

  • Pokorný V, Skuhravý V (1981) The inquilines of the Lipara-galls. In: Skuhravý V (ed) Invertebrates and vertebrates attacking common reed stands (Phragmites communis) in Czechoslovakia. Studie ČSAV 1. Czechoslovak Academy of Sciences, Prague, pp 45–47

    Google Scholar 

  • Poole RW (1974) An introduction to quantitative ecology. McGraw-Hill, New York

    Google Scholar 

  • Poulin B, Lefebvre G (2002) Effect of winter cutting on the passerine breeding assemblage in French Mediterranean reedbeds. Biodivers Conserv 11:1567–1581

    Article  Google Scholar 

  • Prach K, Řehounková K, Lencová K, Jírová A, Konvalinková P, Mudrák O, Študent V, Vaněček Z, Tichý L, Petřík P, Šmilauer P, Pyšek P (2013) Vegetation succession in restoration of disturbed sites in Central Europe: the direction of succession and species richness across 19 seres. Appl Veg Sci 17:193–200

    Article  Google Scholar 

  • Pühringer G (1975) Zur Faunistik und Populationsdynamik der Schilfspinnen des Neusiedler Sees. Sitz Akad Wiss math naturwissenschaftliche Kl 184:379–419

    Google Scholar 

  • Qian H, Ricklefs RE (2008) Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol Lett 11:547–553

    Article  PubMed  Google Scholar 

  • Řezáč M, Král J, Pekár S (2007) The spider genus Dysdera (Araneae, Dysderidae) in Central Europe: revision and natural history. J Arachnol 35:432–462

    Article  Google Scholar 

  • Řezáč M, Kůrka A, Růžička V, Heneberg P (2015) Red List of Czech spiders: 3rd edition, adjusted according to evidence-based national conservation priorities. Biologia 70:645–666

    Google Scholar 

  • Sanver D, Hawkins BA (2000) Galls as habitats: the inquiline communities of insect galls. Basic Appl Ecol 1:3–11

    Article  Google Scholar 

  • Saure C (2006) Gasteruption phragmiticola sp. n., eine neue Gasteruption-Art aus Deutschland (Hymenoptera: Evanioidea: Gasteruptionidae). Beitr Entomol 56:125–132

    Google Scholar 

  • Schaefer CW, Panizzi AR (2000) Heteroptera of economic importance. CRC Press, Boca Raton

    Book  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MH, Lefebvre G, Poulin B, Tscharntke T (2005) Reed cutting affects arthropod communities, potentially reducing food for passerine birds. Biol Conserv 121:157–166

    Article  Google Scholar 

  • Tewksbury L, Casagrande R, Blossey B, Häfliger P, Schwarzländer M (2002) Potential for biological control of Phragmites australis in North America. Biol Control 23:191–212

    Article  Google Scholar 

  • Tscharntke T (1989) Attack by a stem-boring moth increases susceptibility of Phragmites australis to gall-making by a midge: mechanisms and effects on midge population dynamics. Oikos 55:93–100

    Article  Google Scholar 

  • Tscharntke T (1992) Fragmentation of Phragmites habitats, minimum viable population size, habitat suitability, and local extinction of moths, midges, flies, aphids, and birds. Conserv Biol 6:530–536

    Article  Google Scholar 

  • Tscharntke T (1993) Connections of insect population dynamics with community structure in Phragmites habitats. In: den Boer PJ, Mols PJM, Szysko J (eds) Dynamics of populations. Agricultural University, Warszaw, pp 37–44

    Google Scholar 

  • Tscharntke T (1999) Insects on common reed (Phragmites australis): community structure and the impact of herbivory on shoot growth. Aquat Bot 64:399–410

    Article  Google Scholar 

  • Tscharntke T, Abraham R, Vidal S (1991) Larval characteristics and life-history traits of the parasitoids attacking Giraudiella inclusa Fr. (Dipt., Cecidomyiidae). J Appl Entomol 112:464–475

    Article  Google Scholar 

  • van der Putten WH (1997) Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-Back and Progression (1993–1994). Aquat Bot 59:263–275

    Article  Google Scholar 

  • Wachmann E, Melber A, Deckert J (2004) Wanzen. Band 2. Cimicomorpha. Microphysidae (Flechtenwanzen), Miridae (Weichwanzen). Die Tierwelt Deutschlands, 75. Teil, Goecke and Evers, Keltern

  • Wachmann E, Melber A, Deckert J (2006) Wanzen. Band 1. Dipsocoromorpha, Nepomorpha, Gerromorpha, Leptopodomorpha, Cimicomorpha (Teil 1). Die Tierwelt Deutschlands, 77. Teil, Goecke and Evers, Keltern

  • Wachmann E, Melber A, Deckert J (2007) Wanzen. Band 3. Pentatomomorpha I. Die Tierwelt Deutschlands und der angrezenden Meeresteile. Die Tierwelt Deutschlands, vol 78. Goecke and Evers, Keltern

  • Wachmann E, Melber A, Deckert J (2008) Wanzen. Band 4. Pentatomomorpha II. Die Tierwelt Deutschlands und der angrezenden Meeresteile. Die Tierwelt Deutschlands, vol 81. Goecke and Evers, Keltern

  • Wapshere AJ (1990) Biological control of grass weeds in Australia: an appraisal. Plant Prot Q 5:62–75

    Google Scholar 

  • Weiner CN, Werner M, Linsemair KE, Blüthgen N (2014) Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95:466–474

    Article  PubMed  Google Scholar 

  • Westrich P (2008) Zur Überflutungstoleranz von Hymenopteren in Gallen von Lipara lucens (Diptera: Chloropidae). Eucera 1:1–16

    Google Scholar 

  • Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87:1886–1895

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

PB and AA were supported by the Specifický výzkum Projects 2101/2013 and 2102/2013 from the University of Hradec Králové, ŠK was supported by the S Grant of Ministry of Education, Sports and Youth of the Czech Republic, and MŘ was supported by the Ministry of Agriculture of the Czech Republic Project MZe RO0415. We thank Albert Damaška (Prague, Czech Republic), Alois Hamet, Tomáš Kopecký, Jan Pelikán (all Hradec Králové, Czech Republic) and Pavel Tyrner (Litvínov, Czech Republic) for the revision of identification of some specimens. Last but not least, we thank the landlords and quarry operators for allowing access to habitats in industrial areas and/or providing data on history of the particular sampling sites, and the nature conservation authorities for allowing the access to the protected areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Heneberg.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Ponel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogusch, P., Macek, J., Janšta, P. et al. Industrial and post-industrial habitats serve as critical refugia for pioneer species of newly identified arthropod assemblages associated with reed galls. Biodivers Conserv 25, 827–863 (2016). https://doi.org/10.1007/s10531-016-1070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1070-5

Keywords

Navigation