Skip to main content

Advertisement

Log in

Applying complementary species vulnerability assessments to improve conservation strategies in the Galapagos Marine Reserve

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Marine biodiversity can be protected by identifying vulnerable species and creating marine protected areas (MPAs) to ensure their survival. A wide variety of methods are employed by environmental managers to determine areas of conservation priority, however which methods should be applied is often a subject of debate for practitioners and scientists. We applied two species vulnerability assessments, the International Union for the Conservation of Nature (IUCN) red list of threatened species and FishBase’s intrinsic vulnerability assessment, to fish communities in three coastal habitats (mangrove, rocky and coral) on the island of San Cristobal, Galapagos. When using the IUCN red list of threatened species, rocky reefs hosted the greatest number of vulnerable species, however when applying the FishBase assessment of intrinsic vulnerability mangroves hosted the greatest abundance of ‘very-highly’ vulnerable species and coral ecosystems hosted the greatest abundance of ‘highly’ vulnerable species. The two methods showed little overlap in determining habitat types that host vulnerable species because they rely on different biological and ecological parameters. Since extensive data is required for IUCN red list assessments, we show that the intrinsic vulnerability assessment from FishBase can be used to complement the IUCN red list especially in data-poor areas. Intrinsic vulnerability assessments are based on less data-intensive methods than the IUCN red list, but nonetheless may bridge information gaps that can arise when using the IUCN red list alone. Vulnerability assessments based on intrinsic factors are not widely applied in marine spatial planning, but their inclusion as a tool for forming conservation strategies can be useful in preventing species loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen G, Robertson R, Rivera R, Edgar G, Merlen G, Zapata F, Barraza E (2010) Stegastes beebei. In: IUCN 2013. IUCN Red list of threatened species. Version 2013.1

  • Barber RT, Chavez FP (1986) Ocean variability in relation to living resources during the 1982–83 El Niño. Nature 319:279–285

    Article  CAS  Google Scholar 

  • Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714

    Article  PubMed  Google Scholar 

  • Briggs JC (2011) Marine extinctions and conservation. Mar Biol 158:485–488

    Article  Google Scholar 

  • Bustamante RH, Wellington GM, Branch GM, Edgar GJ, Martínez P et al (2002) Outstanding marine features of Galápagos. In: Bensted-Smith R, Dinnerstein E (eds) A biodiversity vision for the Galapagos Islands: an exercise for ecoregional planning. WWF, Washington DC, pp 60–71

    Google Scholar 

  • Casey JM, Myers RA (1998) Near extinction of a large, widely distributed fish. Science 281:690–692

    Article  CAS  PubMed  Google Scholar 

  • Cheung WWL, Pitcher TJ, Pauly D (2005) A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol Conserv 124:97–111

    Article  Google Scholar 

  • Cheung WWL, Watson R, Morato T, Pitcher TJ, Pauly D (2007) Intrinsic vulnerability in the global fish catch. Mar Ecol Prog Ser 333:1–12

    Article  Google Scholar 

  • Costello C, Ovando D, Hilborn R, Gaines SD, Deschenes O, Lester SE (2012) Status and Solutions for the World’s Unassessed Fisheries. Science 338:517–520

    Article  CAS  PubMed  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew, and ecosystem functioning. Ecol Lett 6:680–687

    Article  Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction vulnerability in marine populations. Fisheries 4:25–64

    Google Scholar 

  • Dulvy NK, Ellis JR, Goodwin NB, Grant A, Reynolds JD, Jennings S (2004) Methods of assessing extinction risk in marine fishes. Fisheries 5:255–276

    Google Scholar 

  • Edgar GJ, Banks S, Bensted-Smith R, Calvopiña M, Chiriboga A, Garske LE, Henderson S, Miller KA, Salazar S (2008) Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aquatic Conserv: Marine Fresh Eco 18:955–968

    Article  Google Scholar 

  • Edgar GJ et al (2009) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Glob Change Biol 16:2876–2890

    Article  Google Scholar 

  • Eken G et al (2004) Key biodiversity areas as site conservation targets. Bioscience 54(1110–461):1118

    Google Scholar 

  • Fernandes L et al (2005) Establishing representative no-take areas in the Great Barrier Reef: large-scale implementation of theory on marine protected areas. Conserv Biol 19:1733–1744

    Article  Google Scholar 

  • Ferretti F, Worm B, Britten GL, Heithaus MR, Lotze HK (2010) Patterns and ecosystem consequences of shark declines in the ocean. Ecol Lett 13:1055–1071

    PubMed  Google Scholar 

  • Froese R, Pauly D (eds) (2014) FishBase, version 02/2014 www.FishBase.org. Accessed February 2014

  • Global Environment Facility (GEF)-United Nations Development Program project # 4810:473 (2012) Strengthening the marine protected area system to conserve marine key biodiversity areas. http://www.thegef.org/gef/project_detail?projID=4810. Accessed July 2013

  • Hayward MW (2011) Using the IUCN Red List to determine effective conservation strategies. Biodivers Conserv 20:2563–2573

    Article  Google Scholar 

  • Hearn A (2008) The rocky path to sustainable fisheries management and conservation in the Galápagos Marine Reserve. Ocean Coast Manag 51:567–574

    Article  Google Scholar 

  • IUCN (2014) IUCN Red list of threatened species. Version 2013.2. http://www.iucnredlist.org/. Accessed February 2014

  • Krebs CJ (1999) Ecological Methodology, 2nd edn. Addison Wesley Longman, Inc., Menlo Park

    Google Scholar 

  • Lauck T, Clark CW, Mangel M, Munro GR (1998) Implementing the precautionary principle in fisheries management through marine reserves. Ecol App 8(1):72–78

    Article  Google Scholar 

  • Le Quesne W, Jennings S (2011) Predicting species vulnerability with minimal data to support rapid risk assessment of fishing impacts on biodiversity. Appl Ecol 49:20–28

    Article  Google Scholar 

  • Leslie HM (2005) A synthesis of marine conservation planning approaches. Conserv Biol 19(6):1701–1713

    Article  Google Scholar 

  • Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akcakaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: the background to IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442

    Article  PubMed  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • MATLAB (2009) MATLAB Version 7.8.0. The Math Works Inc., Massachusetts

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  PubMed  Google Scholar 

  • Myers RA, Worm B (2005) Extinction, survival or recovery of large predatory fishes. Philos Trans Roy Soc B 360:13–20

    Article  Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss apex predatory sharks from a coastal ocean. Science 315:1846

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides F, Murillo JC, Toral Ve, Reck G (2002) Bacalao. In: Danulat E, Edgar GJ (eds) Reserva Marina de Galápagos. Línea Base de la Biodiversidad. Fundación Charles Darwin/Servicio Parque Nacional Galápagos, Galápagos, p 146–161

  • Pauly D, Christensen V, Dalsgaard V, Froese R, Torres F Jr (1998) Fishing down marine food webs. Science 279:860–863

    Article  CAS  PubMed  Google Scholar 

  • Polidoro BA, Brooks T, Carpenter KE, Edgar GJ, Henderson S, Sanciangco J, Robertson DR (2012) Patterns of extinction risk and threat for marine vertebrates and habitat-forming species in the Tropical Eastern Pacific. Mar Ecol Prog Ser 448:93–104

    Article  Google Scholar 

  • Reck GK (1983) The coastal fisheries in the Galapagos Islands, Ecuador. In: Description and consequences for management in the context of marine environmental protection and regional development. Dissertation zur Erlangung des Doktorgrades, Christian-Albrechts-Universita¨t zu Kiel, Kiel, p 231

  • Reynolds JD, Webb TJ, Hawkins LA (2005) Life history and ecological correlates of extinction risk in European fresh water fishes. Can J Fish Aquat Sci 62:854–862

    Article  Google Scholar 

  • Rodrigues ASL, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    Article  PubMed  Google Scholar 

  • Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer

  • Walker TI, Hudson RJ, Gason AS (2005) Catch Evaluation of Target, By-product and By-catch Species Taken by Gillnets and Longlines in the Shark Fishery of South-eastern Australia. J Northw Atl Fish Sci 35:505–530

    Article  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS et al (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  PubMed  Google Scholar 

  • Worm B et al (2009) Rebuilding Global Fisheries. Science 325:578–585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Galapagos National Park and J. C. Murillo for making this project possible. We would also like to thank J. Denkinger, and Universidad San Francisco de Quito-Galapagos Academic Institute for the Arts and Sciences for providing resources and support for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Kaplan.

Additional information

Communicated by Angus Jackson.

Appendix

Appendix

See Table 3.

Table 3. List of the 67 fish species encountered in this study with FishBase vulnerability scores, IUCN status, IUCN population trends, Galapagos Endemism (FishBase 2013, IUCN 2013), and abundance per transect observed across three habitat types

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, K.A., Montero-Serra, I., Vaca-Pita, E.L. et al. Applying complementary species vulnerability assessments to improve conservation strategies in the Galapagos Marine Reserve. Biodivers Conserv 23, 1509–1528 (2014). https://doi.org/10.1007/s10531-014-0679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0679-5

Keywords

Navigation