Skip to main content
Log in

Should we correct rarity measures for body size to evaluate arthropod vulnerability? Insights from Mediterranean tenebrionid beetles

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We investigated the influence of body size on rarity patterns at a regional scale using the tenebrionid beetles of Latium (Central Italy). For this we calculated geographical range size (no. of 10 km square cells), habitat breadth (no. of phytoclimatic units), and abundance (no. of sampled individuals) using a large database containing 3,561 georeferenced records for 84 native species. For each species, we used total body length to correct rarity measures for body size. Then we calculated vulnerability (Kattan) indices using both corrected and uncorrected rarity scores. Finally we used species range trends (expanded vs. contracted) as a measure of actual species decline. We found that range trends were correlated with vulnerability index independently from body size correction, the species with the highest vulnerability being those that experienced the strongest range contraction for both corrected and uncorrected measures. Also, we found that correcting for body size may be problematic because of the weak correlations between body size and geographical and ecological rarity (notably, abundance was not correlated). These findings indicate that correcting rarity for body size is not only theoretically questionable, but also practically difficult and possibly useless for conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliquò V, Rastelli M, Rastelli S, Soldati F (2006) Coleotteri Tenebrionidi d’Italia. CD-ROM Museo Civico di Storia Naturale di Carmagnola, Carmagnola

  • Arita HT, Robinson JG, Redford KH (1990) Rarity in Neotropical forest mammals and its ecological correlates. Conserv Biol 4:181–192

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1994) Animal body size distributions: patterns, mechanisms and implications. Trends Ecol Evol 9:471–474

    Article  PubMed  CAS  Google Scholar 

  • Blackburn TM, Harvey PH, Pagel MD (1990) Species number, population density and body size relationships in natural communities. J Anim Ecol 59:335–345

    Article  Google Scholar 

  • Blackburn TM, Brown VK, Doube BM, Greenwood JJD, Lawton JH, Stork NE (1993) The relationship between abundance and body size in natural animal assemblages. J Anim Ecol 62:519–528

    Article  Google Scholar 

  • Blasi C (1994) Carta del fitoclima del Lazio. Regione Lazio and Università di Roma “La Sapienza”, Rome

  • Bowman J (2003) Is dispersal distance of birds proportional to territory size? Can J Zool 81:195–202

    Article  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Brändle M, Öhlschläger S, Brandl R (2002) Range sizes in butterflies: correlation across scales. Evol Ecol Res 4:993–1004

    Google Scholar 

  • Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier L-F, Blanchard JL, Brey T, Carpenter SR, Blandenier MFC, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmott J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess R, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Maurer BH (1989) Macroecology: the division of food and space among species on continents. Science 243:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Stevens GC, Dawn MK (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Cederna C (1980) Nostra Italia del miracolo, Longanesi, Milano

  • Clauset A, Erwin DH (2008) The evolution and distribution of species body size. Science 321:399–401

    Article  PubMed  CAS  Google Scholar 

  • Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS ONE 6:e14508

    Article  PubMed  CAS  Google Scholar 

  • Crafts N, Toniolo G (1996) Economic growth in Europe since 1945. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2000) Which traits of species predict population declines in experimental forest fragments? Ecology 81:1450–1461

    Article  Google Scholar 

  • Dobson FS, Yu J (1993) Rarity in Neotropical forest mammals revisited. Conserv Biol 7:586–591

    Article  Google Scholar 

  • Etienne RS, Olff H (2004) How dispersal limitation shapes species-body size distributions in local communities. Am Nat 163:69–83

    Article  PubMed  Google Scholar 

  • Fattorini S (2008a) A multidimensional characterization of rarity applied to the Aegean tenebrionid beetles (Coleoptera Tenebrionidae). J Insect Conserv 12:251–263

    Article  Google Scholar 

  • Fattorini S (2008b) Ecology and conservation of tenebrionid beetles in Mediterranean coastal areas. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Trivandrum, pp 165–297

    Google Scholar 

  • Fattorini S (2013) Relations between species rarity, vulnerability, and range contraction for a beetle group in a densely populated region in the Mediterranean biodiversity hotspot. Conserv Biol (in press)

  • Fattorini S, Cardoso P, Rigal F, Borges PVA (2012) Use of arthropod rarity for area prioritisation: insights from the Azorean Islands. PLoS ONE 7:e33995

    Article  PubMed  CAS  Google Scholar 

  • Fattorini S, Sciotti A, Tratzi P, Di Giulio A (2013) Species distribution, ecology, abundance, body size and phylogeny originate interrelated rarity patterns at regional scale. J Zool Syst Evol Res. doi:10.1111/jzs.12026

  • Gabriel R, Homem N, Couto A, Calvo Aranda S, Borges PAV (2011) Azorean bryophytes: a preliminary review of rarity patterns. Açoreana Suplemento 7:149–206

    Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman & Hall, London

    Book  Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Conservation implications of geographic range size-body size relationships. Conserv Biol 10:638–646

    Article  Google Scholar 

  • Gaston KJ, Fuller RA (2009) The sizes of species geographic ranges. J Appl Ecol 46:1–9

    Article  Google Scholar 

  • Gaston KJ, Lawton JH (1988) Patterns in the distribution and abundance of insect populations. Nature 331:709–711

    Google Scholar 

  • Gaston KJ, Lawton JH (1990) Effects of scale and habitat on the relationship between species local abundance and large scale distribution. Oikos 58:329–335

    Article  Google Scholar 

  • Ginsborg P (2003) A history of contemporary Italy. Palgrave Macmillan, New York

    Google Scholar 

  • Gotelli NJ, Entsminger GL (2001) EcoSim: null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm

  • Guidoni E, Petrucci G, Mazzanti R, Mongini GM, Palagiano C, et al (1985) Guide d’Italia. Lazio. Fabbri, Milano

  • Hanski I (1978) Some comments on the measurement of niche metrics. Ecology 59:168–174

    Google Scholar 

  • Hartley S, Kunin WE (2003) Scale dependency of rarity, extinction risk, and conservation priority. Conserv Biol 17:1559–1570

    Article  Google Scholar 

  • Hernández Fernández M, Vrba ES (2005) Body size, biomic specialization and range size of African large mammals. J Biogeogr 32:1243–1256

    Article  Google Scholar 

  • Isaac JL, Vanderwal J, Johnson CN, Williams SE (2009) Resistance and resilience: quantifying relative extinction risk in a diverse assemblage of Australian tropical rainforest vertebrates. Divers Distrib 15:280–288

    Article  Google Scholar 

  • IUCN (2001) IUCN red list categories and criteria: Version 31 IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge, UK

  • IUCN (2003) Guidelines for application of IUCN Red List Criteria at regional levels: Version 3.0. IUCN Species Survival Commission, IUCN, Gland, Switzerland and Cambridge, UK

  • Kattan G (1992) Rarity and vulnerability: the birds of the Cordillera Central of Colombia. Conserv Biol 6:64–70

    Article  Google Scholar 

  • Kozłowski J, Gawelczyk AT (2002) Why are species’ body size distributions usually skewed to the right? Funct Ecol 16:419–432

    Google Scholar 

  • Loder N, Gaston KJ, Warren PH, Arnold HR (1998) Body size and feeding specificity: macrolepidoptera in Britain. Biol J Linn Soc 63:121–139

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Maes D, Vanreusel W, Jacobs I, Berwaerts K, Van Dyck Hans H (2012) Applying IUCN red list criteria at a small regional level: a test case with butterflies in Flanders (north Belgium). Biol Conserv 145:258–266

    Article  Google Scholar 

  • Manne LL, Pimm SL (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Anim Conserv 4:221–229

    Article  Google Scholar 

  • Morse DR, Lawton JH, Dodson MM, Williamson MH et al (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314:731–733

    Article  Google Scholar 

  • Morse DR, Stork NE, Lawton JH (1988) Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland rain forest trees. Ecol Entomol 13:25–37

    Article  Google Scholar 

  • Murray BR, Hose GC (2005) The interspecific range size-body size relationship in Australian frogs. Global Ecol Biogeogr 14:339–345

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Novotný V, Kindlmann P (1996) Distribution of body sizes in arthropod taxa and communities. Oikos 75:75–82

    Article  Google Scholar 

  • Olalla-Tarraga MA, Rodriguez MA (2007) Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Global Ecol Biogeogr 16:606–617

    Article  Google Scholar 

  • Pullin AS (2002) Conservation biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pyron M (1999) Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. J Biogeogr 26:549–558

    Article  Google Scholar 

  • Rabinowitz DS (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, Chichester, pp 205–217

    Google Scholar 

  • Reemer M, van Helsdingen PJ, Kleukers RMJC (eds) (2003) Changes in ranges: invertebrates on the move. Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden, 2–5 Sep 2001. European Invertebrate Survey, Leiden

  • Samways MJ, McGeoch M, New TR (2010) Insect conservation. A handbook of approaches and methods. Oxford University Press, Oxford

    Google Scholar 

  • Strayer DL (1999) Statistical power of presence–absence data to detect population declines. Conserv Biol 13:1034–1038

    Article  Google Scholar 

  • Strona G, Galli P, Montano S, Seveso D, Fattorini S (2012) Global-scale relationships between colonization ability and range size in marine and freshwater fish. PLoS ONE 11:e49465

    Article  Google Scholar 

Download references

Acknowledgments

E. Maurizi, A. Sciotti, and P. Tratzi were instrumental in making this research feasible through digitizing and georeferencing many records. R. Lo Monaco helped us to collect body size measures. We are grateful to two anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fattorini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fattorini, S., Di Giulio, A. Should we correct rarity measures for body size to evaluate arthropod vulnerability? Insights from Mediterranean tenebrionid beetles. Biodivers Conserv 22, 2805–2819 (2013). https://doi.org/10.1007/s10531-013-0556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0556-7

Keywords

Navigation