Skip to main content

Advertisement

Log in

Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Calcareous grasslands are among the most species-rich plant communities in Europe with a particularly high nature conservation value. During the past centuries their distribution has markedly decreased, at least partly due to urbanization. Thus we investigated the effects of urbanization on species diversity along a spatio-temporal urbanization gradient from traditionally managed grassland to areas affected by urban developments, which was situated in the plains northwest of Munich, Germany. Both a RLQ analysis linking species and environmental traits, and a redundancy analysis of the plant community features showed that soil disturbance, soil sealing and mean temperature explained most of the environmental variation along the gradient. The species in urban habitats showed increased insect pollination, earlier flowering and prolonged seed longevity. While urbanization favored short-lived species with dysochorous dispersal, the reference grasslands harbored more wind-pollinated perennials with effective vegetative spread and relatively large, short-lived seeds. Compared to the urban sites, traditionally used grasslands had a higher species diversity, more threatened species and a lower proportion of non-natives. We conclude that even under conservation management, urban habitats are not capable of maintaining the original biodiversity. However, we also found threatened species occurring exclusively in urban sites. Hence, urbanization decreased the area and diversity of traditional calcareous grasslands, but it also established niches for endangered species which are not adapted to the living conditions in calcareous grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht H, Eder E, Langbehn T, Tschiersch C (2011) The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape Urban Plan 100:187–197. doi:10.1016/j.landurbplan.2010.11.011

    Article  Google Scholar 

  • Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343. doi:10.1007/s10841-011-9419-2

    Article  Google Scholar 

  • Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landscape Ecol 14:493–507

    Article  Google Scholar 

  • Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6:e23459. doi:10.1371/journal.pone.0023459

    Article  PubMed  CAS  Google Scholar 

  • Bayerisches Landesamt für Umwelt (ed) (2009) Stadtbiotopkartierung. http://www.lfu.bayern.de/natur/fachinformationen/biotopkartierung_flachland/stadtbiotopkartierung/index.htm. Accessed 21 Feb 2012

  • Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541. doi:10.1111/j.0030-1299.2008.16776.x

    Article  Google Scholar 

  • Besnard AF (1866) Bayerns Flora Aufzählung der in Bayern diesseits und jenseits des Rheins wildwachsenden phanerogamischen Pflanzen, mit Angabe ihrer Standorte, Blüthezeit. der Linné’schen Klassen und der natürlichen Familien. Grubert, Munich

    Google Scholar 

  • Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslova Z, Schlüter H, Weber H (2003) Map of the natural vegetation of Europe 1: 2 500 000. Landwirtschafts verlag, Münster

    Google Scholar 

  • Bräuniger C, Knapp S, Kühn I, Klotz S (2010) Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landscape Urban Plan 97:283–295. doi:10.1016/j.landurbplan.2010.07.001

    Article  Google Scholar 

  • Burton ML, Samuelson LJ, MacKenzie MD (2009) Riparian wood plant traits across an urban-rural land use gradient and implications for watershed function with urbanization. Landscape Urban Plan 90:42–55. doi:10.1016/j.landurbplan.2008.10.005

    Article  Google Scholar 

  • Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8:93–106. doi:10.1007/s11252-005-1421-6

    Article  Google Scholar 

  • Deutscher Wetterdienst München (2011) Metereological Station Nymphenburg. http://www.mstatistik-muenchen.de/themen/geographie_wetter/berichte/berichte_2009/mb090103.pdf. Accessed 21 Feb 2012

  • Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089. doi:10.1890/03-0178

    Article  Google Scholar 

  • ESRI Inc. (2007) ArcGis 9.3. Environmental System Research Institute, Redlands

  • European Commission (2008) Directive 92/43/EEC on the consercation of natural habitats and of wild fauna and flora. Management of Natura 2000 habitats. 6210. Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia). http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/6210_Seminatural_dry_grasslands.pdf. Accessed 21 Feb 2012

  • European Environment Agency (1998) Europe’s encironnrent: the second assessment. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Fattorini S (2011) Insect extinction by urbanization: a long term study in Rome. Biol Conserv 144:370–375. doi:10.1016/j.biocon.2010.09.014

    Article  Google Scholar 

  • Fetzer KD, Grottenthaler W, Hofmann B, Jerz H, Rückert G, Schmidt F, Wittmann O (1986) Standortkundliche Bodenkarte von Bayern 1:50.000. München-Augsburg und Umgebung. Erläuterungen. Bayerisches Geologisches Landesamt, Munich

    Google Scholar 

  • Garnier E, Lavorel S, Ansquer P et al (2007) Assessing the effects of land use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985. doi:10.1093/aob/mcl215

    Article  PubMed  Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built up areas. Landscape Ecol 22:1227–1239. doi:10.1007/s10890-007-9102-x

    Article  Google Scholar 

  • Gulezian PZ, Nyberg DW (2010) Distribution of invasive plants in a spatially structured urban landscape. Landscape Urban Plan 95:161–168. doi:10.1016/j.landurbplan.2009.12.013

    Article  Google Scholar 

  • Hahs AK, McDonnell MJ (2007) Composition of the plant community in remnant patches of grassy woodland along an urban–rural gradient in Melbourne, Australia. Urban Ecosyst 10:355–377. doi:10.1007/s11252-007-0034-7

    Article  Google Scholar 

  • Hennig EI, Ghazoul J (2011) Pollinating animals in the urban environment. Urban Ecosyst 13:137–150. doi:10.1007/s11252-011-0202-7

    Google Scholar 

  • Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25:249–255

    Article  Google Scholar 

  • Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720. doi:10.1046/j.1365-2664.2002.00746.x

    Article  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802. doi:10.1093/biomet/75.4.800

    Article  Google Scholar 

  • Honnay O, Piessens K, Van Landuyt W, Hermy M, Gulinck H (2003) Satelite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape Urban Plan 63:241–250. doi:10.1016/S0169-2046(02)00194-9

    Article  Google Scholar 

  • Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. PNAS 100:8788–8792. doi:10.1073/pnas.1537557100

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA, Oliveras DM (2009) Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. J Insect Conserv 13:655–665. doi:10.1007/s10841-009-9215-4

    Article  Google Scholar 

  • Kleyer M (2002) Validation of plant functional types across two contrasting landscapes. J Veg Sci 13:167–178. doi:10.1111/j.1654-1103.2002.tb02036.x

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC et al (2008) The LEDA traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274. doi:10.1111/j.1365-2745.2008.01430.x

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde 38, Bonn

    Google Scholar 

  • Knapp S, Kühn I, Wittig R, Ozinga WA, Poschlod P, Klotz S (2008a) Urbanization causes shifts in species’ trait state frequencies. Preslia 80:375–388

    Google Scholar 

  • Knapp S, Kühn I, Moosbrugger V, Klotz S (2008b) Do protected areas in urban and rural landscapes differ in species diversity? Biodivers Conserv 17:1595–1612. doi:10.1007/s10531-008-9369-5

    Article  Google Scholar 

  • Kottmeier C, Biegert C, Corsmeier U (2007) Effects of urban land use on surface temperature in Berlin: case study. J Urban Plan Dev 133:128–137. doi:10.1061/(ASCE)0733-9488(2007)133:2(128)

    Article  Google Scholar 

  • Kranz CA (1859) Uebersicht der Flora von München: enthaltend die in der Umgebung Münchens wildwachsenden und verwilderten Gefässpflanzen. Franz, Munich

    Google Scholar 

  • Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764

    Google Scholar 

  • Kowarik I (2008) On the role of alien non-native species in urban flora and vegetation. In: Marzluff J et al (eds) Urban ecology. An international perspective on the interaction between humans and nature. Springer, New York, pp 321–338. doi:10.1007/978-0-387-73412-5_20

    Google Scholar 

  • Kuttler W (2008) The urban climate—basic and applied aspects. In: Matzluff JM et al (eds) Urban Ecology. Springer, New York, pp 233–248. doi:10.1007/978-0-387-73412-5_13

    Chapter  Google Scholar 

  • Landolt E (2010) Flora indicativa. Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Haupt, Bern, Stuttgart, Wien

    Google Scholar 

  • Larson DW, Matthes U, Kelly PE (2000) Cliff ecology. Pattern and process in cliff ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lavorel S, Touzard B, Lebreton JD, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecol 19:227–240. doi:10.1016/S1146-609X(98)80027-1

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lososová Z, Láníková D (2010) Differences in trait compositions between rocky natural and artificial habitats. J Veg Sci 21:520–530. doi:10.1111/j.1654-1103.2009.01160.x

    Article  Google Scholar 

  • Lundholm JT, Marlin A (2006) Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst 9:139–159. doi:10.1007/s11252-006-8587-4

    Article  Google Scholar 

  • Marzluff JM, Ewing K (2001) Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restor Ecol 9:280–292. doi:10.1046/j.1526-100x.2001.009003280.x

    Article  Google Scholar 

  • McCune B, Mefford MJ (2010) PC-Ord. Multivariate analysis of ecological data. Version 6.0. MjM Software Design, Gleneden Beach

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83:31–44

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890. doi:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2

    Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi:10.1016/j.biocon.2005.09.005

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. doi:10.1007/s11252-007-0045-4

    Article  Google Scholar 

  • Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the greater Paris area, France. Ecosystems 10:661–671. doi:10.1007/s10021-007-9047-6

    Article  Google Scholar 

  • Ostermann OP (1998) The need for management of nature conservation sites designated under Natura 2000. J Appl Ecol 35:968–973. doi:10.1111/j.1365-2664.1998.tb00016.x

    Article  Google Scholar 

  • Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24. doi:10.1111/j.1461-0248.2006.00993.x

    Article  PubMed  Google Scholar 

  • Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—A database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271. doi:10.1007/BF02803198

    Article  Google Scholar 

  • R Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landscape Ecol 26:529–540. doi:10.1007/s10980-011-9579-1

    Article  Google Scholar 

  • Scheuerer M, Ahlmer W (2003) Rote Liste gefährdeter Gefäßpflanzen Bayerns mit regionalisierter Florenliste. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz 165, Augsburg

    Google Scholar 

  • Schippers P, van Groenendael JM, Vleeshouwers LM, Hunt R (2001) Herbaceous plant strategies in disturbed habitats. Oikos 95:198–210. doi:10.1034/j.1600-0706.2001.950202.x

    Article  Google Scholar 

  • Sendtner O (1854) Die Vegetationsverhältnisse Südbayerns nach den Grundsätzen der Pflanzengeographie und mit Bezugnahme auf die Landeskultur. Literarisch-artistische Anstalt, Munich

    Google Scholar 

  • Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. J Ecol 86:163–169. doi:10.1046/j.1365-2745.1998.00240.x

    Article  Google Scholar 

  • Thompson K, Austin KC, Smith RM, Warren PH, Angold PG, Gaston KJ (2003) Urban domestic gardens (I): putting small-scale plant diversity in context. J Veg Sci 14:71–78. doi:10.1111/j.1654-1103.2003.tb02129.x

    Article  Google Scholar 

  • Vallet J, Daniel H, Beaujouan V, Rozé F (2008) Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol 23:1205–1217. doi:10.1007/s10980-008-9293-9

    Article  Google Scholar 

  • Vallet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:412–424. doi:10.1111/j.1654-109X.2010.01087.x

    Article  Google Scholar 

  • WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273. doi:10.1016/S0006-3207(01)00191-4

    Article  Google Scholar 

  • Westermann JR, von der Lippe M, Kowarik I (2011) Seed traits, landscape and environmental parameters as predictors of species occurrence in fragmented urban railway habitats. Basic Appl Ecol 12:29–39. doi:10.1016/j.baae.2010.11.006

    Article  Google Scholar 

  • Williams NSG, Morgan JW, McCarthy MA, McDonnell MD (2006) Local extinction of grassland plants; the landscape matrix is more important than patch attributes. Ecology 87:3000–3006. doi:10.1890/0012-9658(2006)87[3000:LEOGPT]2.0.CO;2

    Google Scholar 

  • Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Norton BA, Thompson K, McDonnell MD (2008) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9. doi:10.1111/j.1365-2745.2008.01460.x

    Article  Google Scholar 

  • Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart

    Google Scholar 

  • Wittmann S (2007) Die Entwicklung der Wald- und Heideflächen im Münchner Norden zwischen 1800 und 2000. Diploma Thesis, Fachhochschule München. http://www.heideflaechenverein.de/landschaft/wald_und_heide.pdf. Accessed 30 June 2012

  • Young CH, Jarvis PJ (2001) Measuring urban habitat fragmentation: an example from the Black Country, UK. Landscape Ecol 16:643–658

    Article  Google Scholar 

  • Zhang XY, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northeren mid- and high latidudes inferred from MODIS data. Glob Change Biol 10:1133–1145. doi:10.1111/j.1365-2486.2004.00784.x

    Article  Google Scholar 

  • Zipperer WC, Guntenspergen GR (2009) Vegetation composition and structure of forest patches along urban–rural gradients. In: McDonnell MJ, Hahs AK, Breuste JH (eds) Ecology of cities and towns: A comparative approach. Cambridge University Press, Cambridge, pp 274–286

    Chapter  Google Scholar 

Download references

Acknowledgments

A group of dedicated students at the Technische Universität München helped with collecting vegetation and soil data. In addition, we thank Johannes Kollmann and two anonymous reviewers for helpful comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Albrecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10531_2013_437_MOESM1_ESM.pdf

Additional information on the study sites (photographs, explanations on site conditions and land use, GPS coordinates) (PDF 1408 kb)

Separate analyses of the R-, L- and Q-tables (PDF 612 kb)

Relationship of environmental traits to the first RLQ axis (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, H., Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers Conserv 22, 2243–2267 (2013). https://doi.org/10.1007/s10531-013-0437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0437-0

Keywords

Navigation