Skip to main content

Advertisement

Log in

Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs, transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems. Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types (bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve (AUC)

GAM:

Generalized additive models

GBM:

Generalized boosting models

GLM:

Generalized linear models

MARS:

Multiple adaptive regression splines

RF:

Random forest for classification and regression

References

  • Allison I, Bindoff NL, Bindschadler RA, Cox PM et al (2009) The Copenhagen diagnosis. Updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia

  • Araujó MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Banko G (2005) CLC 2000—Austria. Upgrading and updating the 1990 Corine land cover map. Final report, Umweltbundesamt, Vienna

  • Bellamy PH, Loveland PJ, Bradley I, Lark RM, Kirk GJD (2005) Carbon loss from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bergamini A, Peintinger M, Fakheran S, Moradi H, Schmid B, Joshi J (2009) Loss of habitat specialists despite conservation management in fen remnants 1995–2006. Persp Plant Ecol Evol Syst 11:65–79

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R et al (2010) Global assessment of nitrogen deposition effects on plant terrestrial biodiversity: a synthesis. Ecol Appl 20:30–59

    Article  PubMed  CAS  Google Scholar 

  • Böhner J, McCloy KR, Strobl J (eds) (2006) SAGA—Analysis and modelling applications. Göttinger Geogr Abhandlungen 115:1–130

  • Bortoluzzi E, Epron E, Siegenthaler A, Gilbert D, Buttler A (2006) Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol 172:708–718

    Article  PubMed  Google Scholar 

  • Bragazza L (2008) A climatic threshold triggers the die off of peat mosses during an extreme heat wave. Glob Change Biol 14:2688–2695

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284

    Article  PubMed  Google Scholar 

  • Bryne KA, Chojnicki B, Christensen TR, Drösler M, Freibauer A et al (2004) EU peatlands: current carbon stocks and trace gas fluxes. In: CarboEurope-GHG, Concerted action synthesis of the European greenhouse gas budget, Department of Forest Science and Environment, Viterbo, pp 1–58

  • Carroll MJ, Dennis P, Pearce-Higgins J, Thomas CD (2011) Maintaining northern peatland ecosystems in a changing climate: effects of soil moisture, drainage and drain blocking on craneflies. Glob Change Biol 17:2991–3001

    Article  Google Scholar 

  • Clark J, Gallego-Sala A, Allott TEH, Chapman SJ, Farewell T et al (2010) Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Clim Res 45:131–150

    Article  Google Scholar 

  • Conrad O (2007) SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen. Electronic doctoral dissertation, University of Göttingen

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • Dise N (2009) Peatland response to global change. Science 326:810–811

    Article  PubMed  CAS  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252

    Article  Google Scholar 

  • EC (2007) Interpretation manual of European Union habitats. DG environment, Brussels, http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf. Accessed 15 Mar 2011

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engler R, Randin CF, Vittoz P, Czáka T, Beniston M et al (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45

    Article  Google Scholar 

  • Essl F, Egger G (2010) Lebensraumvielfalt in Österreich–Gefährdung und Handlungsbedarf. Zusammenschau der Roten Liste gefährdeter Biotoptypen Österreichs. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt

    Google Scholar 

  • EU (2007) Limiting global climate change to 2 degrees celsius. http://eur-lex.europa.eu/LexUriServ/site/en/com/2007/com2007_0002en01.pdf. Accessed 15 Mar 2011

  • Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404

    Article  Google Scholar 

  • Freibauer A, Drösler M, Gensior A, Schulze ED (2009) Das Potenzial von Wäldern und Mooren für den Klimaschutz in Deutschland und auf globaler Ebene. Natur Land 84:20–25

    Google Scholar 

  • Friedman JH (1991) Multivariate additive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Fronzek S, Carter TR, Jyhlä K (2012) Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Glob Ecol Biogeo 21(1):19–35

    Google Scholar 

  • Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12

    Article  Google Scholar 

  • Fronzek S, Carter TR, Räisänen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Clim Change 99:515–534

    Article  Google Scholar 

  • Grünig A, Steiner GM (2010) Moore: vom Aschenputtel zur Prinzessin? Natur Land 96:4–11

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605

    Article  PubMed  Google Scholar 

  • Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the intergovernmental panel on climate change (AR4). Cambridge University Press, Cambridge

    Google Scholar 

  • Joosten H (2009) The global peatland CO2 picture. Wetlands International, Greifswald University

    Google Scholar 

  • Klaus G (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Wirkungskontrolle Moorschutz. Umwelt Zustand Nr. 0730, BAFU, Bern

  • Le Quéré C, Raupach MR, Canadell JG, Laurent Bopp MG, Ciais P et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Lindsay R (2010) Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. University of East London. http://www.rspb.org.uk/Images/Peatbogs_and_carbon_tcm9-255200.pdf. Accessed 10 Mar 2010

  • MA (2005) Millenium ecosystem assessment. Ecosystems and human well-being: a framework for assessment. Island Press, Washington

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman & Hall, New York

    Google Scholar 

  • McKinsey (2009) Pathways to a low carbon economy. http://www.mckinsey.com/clientservice/ccsi/pathways_low_carbon_economy.asp. Accessed 15 Oct 2009

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55:1–29

    Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) IPCC special report on emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Niklfeld H (1998) Mapping the flora of Austria and the eastern Alps. Revue Valdôtaine d’Histoire Naturelle 51:53–62

    Google Scholar 

  • Niklfeld H (ed) (1999) Rote Listen gefährdeter Pflanzen Österreichs, 2 Auflage. Grüne Reihe 10:33–151

  • Ovando P, Caparrós A (2009) Land use and carbon mitigation in Europe: a survey of the potentials of different alternatives. Ener Pol 37:992–1003

    Article  Google Scholar 

  • Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM et al (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  • Parish F, Sirin A, Charman D, Joosten H, Minaeva T, Silvius M (eds) (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur and Wetlands International Wageningen

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geogr Ann 89A:137–151

    Article  Google Scholar 

  • Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113

    Article  PubMed  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org). Accessed 15 Oct 2010

  • Rickebusch S, Thuiller W, Hickler T, Araujo MB, Sykes MT et al (2008) Incorporating the effects of changes in vegetation functioning and CO2 on water availability in plant habitat models. Biol Lett 4:556–559

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield E et al (2000) Biodiversity–global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Clim 25:753–771

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecol 89:3472–3479

    Article  Google Scholar 

  • Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S et al (2012) Increasing range mismatching of interacting species under global change is related to species traits. Glob Ecol Biogeo 21(1):88–99

    Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Sway C et al (2008) Climatic risk atlas of European butterflies. Pensoft Publishers, Sofia

    Google Scholar 

  • Smart S, Henrys P, Scott W, Hall J, Evans C et al (2010) Impacts of pollution and climate change on ombrotrophic Sphagnum species in the UK: analysis of uncertainties in two empirical niche models. Clim Res 45:163–177

    Article  Google Scholar 

  • Statistik Austria (2010). Adress-, Gebäude- und Wohnungsregister II (AGWRII). http://www.statistik.at/portal/awp/agwr2. Accessed 10 Mar 2010

  • Steiner M (1992) Österreichischer Moorschutzkatalog. Grüne Reihe des BMUF, Vienna

    Google Scholar 

  • Stern N (2007) The economics of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. 2. Auflage. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart

  • Swets JA (1998) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tuittilla E, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493

    Article  Google Scholar 

  • Umweltbundesamt (2010) Naturschutzfachliches informations system Austria (NISA). http://gis.umweltbundesamt.at/austria/natur/nisa/Default.faces. Accessed 10 Mar 2010

  • Van Husen D (1987) The Eastern Alps during the Pleistocene. Geologische Bundesanstalt, Vienna

    Google Scholar 

  • Vile MA, Scott KD, Brault E, Wieder RK, Vitt DH (2011) Living on the edge: the effects of drought on Canada’s western boreal peatland. In: Tuba Z, Slack NG, Starck LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 275–297

    Google Scholar 

  • Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–5742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This analysis has been jointly financed by the Austrian Forests (ÖBf) and the Upper Austrian Federal Government. We are indebted to G.M. Steiner and P. Weiss for comments and helpful discussions, and to two anonymous reviewers whose suggestions significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Essl.

Additional information

Franz Essl and Ingrid Kleinbauer contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Supplementary material 2 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essl, F., Dullinger, S., Moser, D. et al. Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodivers Conserv 21, 655–669 (2012). https://doi.org/10.1007/s10531-011-0206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0206-x

Keywords

Navigation