Skip to main content

Advertisement

Log in

Ground spider assemblages as indicators for habitat structure in inland sand ecosystems

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Open inland sand ecosystems harbour a specialised flora and fauna and are among the most endangered habitats in Central Europe. Land-use changes and lack of habitat dynamics are acknowledged as significant drivers for habitat loss and degradation. It is imperative for nature conservation to obtain criteria such as community structure and biodiversity of model groups to assess the conservation value of threatened habitats. By investigating the correlation between ground spider assemblages and habitat structure, the study aimed to find out the indicator potential of spiders in order to promote conservation objectives and management strategies for open inland sand ecosystems. Non-metric multidimensional scaling revealed four habitat groups with distinct spider assemblages that clearly reflected the whole variety of habitat structure types within the study area. Species distribution was constrained by biotic and abiotic gradients while the ecological traits of spiders differed significantly among the groups. Generalised linear models showed that abundances of particular species were significantly correlated with environmental factors and habitat structure, making them thus suitable as focal species to assess natural habitat modifications as well as success of management efforts. Based on these findings, we derived major aims for successful habitat management of inland sand ecosystems taking into account also the needs of arthropod conservation. Management should include both small and large reserves when aiming for higher levels of disturbance, and sand dynamics to prevent increasing scrub encroachment and to create a larger number of early succession stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AG Boden/Arbeitsgruppe Boden der Geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der Bundesrepublik Deutschland (1994) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften, Hannover

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csari F (eds) International symposium on information theory, 2nd edn. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. J Biogeogr 35:675–681. doi:10.1111/j.1365-2699.2007.01825.x

    Article  Google Scholar 

  • Balzer S, Ssymank A (2005) Natura 2000 in Deutschland. Naturschutz und biologische Vielfalt 14: CD Rom

  • Beals ML (2006) Understanding community structure: a data-driven multivariate approach. Oecologia 150:484–495

    Article  PubMed  Google Scholar 

  • Bell JR, Wheater CP, Cullen WR (2001) The implications of grassland and heathland management for the conservation of spider communities: a review. J Zool 255:377–387. doi:10.1017/S0952836901001479

    Article  Google Scholar 

  • Bellmann H (1997) Zum Vorkommen dünenspezifischer Arthropoden in Mitteleuropa. Mitt dtsch Ges allg angew Ent 11:839–842

    Google Scholar 

  • Blaum N, Seymour C, Rossmanith E, Schwager M, Jeltsch F (2009) Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers Conserv 18:1187–1199. doi:10.1007/s10531-008-9498-x

    Article  Google Scholar 

  • Bonte D, Criel P, van Thournout I, Maelfait J-P (2003) Regional and local variation of spider assemblages (Araneae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911. doi:10.1046/j.1365-2699.2003.00885.x

    Article  Google Scholar 

  • Bonte D, Criel P, Vanhoutte L, van Thournout I, Maelfait J-P (2004) The importance of habitat productivity, stability and heterogeneity for spider species richness in coastal grey dunes along the North Sea and it implications for conservation. Biodivers Conserv 13:2119–2134. doi:10.1023/B:BIOC.0000040004.63826.fb

    Article  Google Scholar 

  • Bonte D, Lens L, Maelfait J-P (2006) Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J Appl Ecol 43:735–747. doi:10.1111/j.1365-2664.2006.01175.x

    Article  Google Scholar 

  • Buchholz S (2008) Spider assemblages in an inland dune complex of Northwest Germany. Drosera 2008:63–76

    Google Scholar 

  • Buchholz S, Hartmann V (2008) Spider fauna of semi-dry grasslands on a military training base in Northwest Germany (Münster). Arachnol Mitt 35:51–60

    Google Scholar 

  • Buddle CM, Spence JR, Langor DW (2000) Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23:424–436. doi:10.1111/j.1600-0587.2000.tb00299.x

    Article  Google Scholar 

  • Burrichter E (1973) Die potentielle natürliche Vegetation in der Westfälischen Bucht - Erläuterungen zur Übersichtskarte 1:200.000. Siedlung Landschaft Westfalen 8:1–62

    Google Scholar 

  • Cattin MF, Blandenier G, Banasek-Richter C, Bersier LF (2003) The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–188

    Article  Google Scholar 

  • Chao A, Shen TJ (2003) Program SPADE (Species Prediction And Diversity Estimation). Program and user’s guide published at http://chao.stat.nthu.edu.tw. Accessed 01 July 2008

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Collins JA, Jennings DT, Forsythe HY (1996) Effects of cultural practices on the spider (Araneae) fauna of lowbush blueberry fields in Washington county, Maine. J Arachnol 24:43–57

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Dennis P, Young MR, Bentley C (2001) The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57. doi:10.1016/S0167-8809(00)00263-2

    Article  Google Scholar 

  • Dinter W (1999) Naturräumliche Gliederung. In: Landesanstalt für Ökologie, Bodenordnung und Forsten NRW (ed.) Rote Liste der gefährdeten Pflanzen und Tiere in Nordrhein-Westfalen, 3. Fassung. LÖBF-Schriftenr 17:29–36

  • Dobson AJ (2002) Introduction to generalized linear models, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Downie IS, Coulson JC, Butterfield JEL (1996) Distribution and dynamics of surface-dwelling spiders across a pasture-plantation ecotone. Ecography 19:29–40. doi:10.1111/j.1600-0587.1996.tb00152.x

    Article  Google Scholar 

  • Drachenfels Ov (1996) Rote Liste der gefährdeten Biotoptypen in Niedersachsen–Bestandsentwicklung und Gefährdungsursachen der Biotop- und Ökosystemtypen sowie ihrer Komplexe—Stand Januar 1996. Naturschutz Landschaftspflege in Niedersachsen 34:1–148

    Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036. doi:10.1111/j.1523-1739.2005.00078.x

    Article  Google Scholar 

  • Engelmann HD (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378–380

    Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448. doi:10.1111/j.1466-8238.2006.00305.x

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68. doi:10.1007/BF00038687

    Article  Google Scholar 

  • Fasham MJR (1977) A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58:551–561

    Article  Google Scholar 

  • Finch OD (1997) Die Spinnen (Araneae) der Trockenrasen eines nordwestdeutschen Binnendünenkomplexes. Drosera 1997:21–40

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280. doi:10.1111/j.1466-8238.2007.00287.x

    Article  Google Scholar 

  • Foord SH, Mafadza MM, Dippenaar-Schoeman AS, Van Rensburg BJ (2008) Micro-scale heterogeneity of spiders (Arachnida: Araneae) in the Soutpansberg, South Africa: a comparative survey and inventory in representative habitats. Afr Zool 43:156–174. doi:10.3377/1562-7020-43.2.156

    Article  Google Scholar 

  • Gerland K (2004) Empfehlungen zur Heidepflege durch Feuer, abgeleitet aus Untersuchungen zur Besiedlung von Brandflächen durch Spinnen. Diploma thesis, University of Applied Science Lippe and Höxter

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Grill A, Knoflach B, Cleary DFR, Kati V (2005) Butterfly, spider, and plant communities in different land-use types in Sardinia, Italy. Biodivers Conserv 14:1281–1300. doi:10.1007/s10531-004-1661-4

    Article  Google Scholar 

  • Harris R, York A, Beattie AJ (2003) Impacts of grazing and burning on spider assemblages in dry eucalypt forests of north-eastern New South Wales, Australia. Aust Ecol 28:526–538. doi:10.1046/j.1442-9993.2003.01310.x

    Article  Google Scholar 

  • Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Parey, Berlin

    Google Scholar 

  • Heublein D (1982) Untersuchungen zum Einfluss eines Waldrandes auf die epigäische Spinnenfauna eines angrenzenden Halbtrockenrasens. Laufener Seminar-Beitr 5:79–94

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Sysmstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosytem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Horvath R, Magura T, Szinetar C, Tothmeresz (2009) Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric Ecosyst Environ 130:16–22. doi:10.1016/j.agee.2008.11.011

    Article  Google Scholar 

  • Hsieh Y-L, Lin Y-S, Tso I-M (2003) Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodivers Conserv 12:2173–2194. doi:10.1023/A:1024591311548

    Article  Google Scholar 

  • Huber C, Schulze C, Baumgarten M (2007) The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany. Biodivers Conserv 16:3653–3680. doi:10.1007/978-1-4020-6865-2_28

    Article  Google Scholar 

  • Hüppe J (1993) Entwicklung der Tieflands-Heidegesellschaften Mitteleuropas in geobotanisch-vegetationsgeschichtlicher Sicht. Ber d Reinh-Tüxen Ges 5:49–75

    Google Scholar 

  • Irmler U, Paustian D, Rief S, Sioli E, Simon J, Voigt N (1994) Entwicklung von Tiergemeinschaften infolge von Pflegemaßnahmen in Trockenheide-Naturschutzgebieten. Faun-ökol Mitt Suppl 16:83–121

    Google Scholar 

  • Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2:297–303

    Google Scholar 

  • Jentsch A, Beyschlag W, Nezadal W, Steinlein T, Welß W (2002) Bodenstörung - treibende Kraft für die Vegetationsdynamik in Sandlebensräumen - Konsequenzen für Pflegemaßnahmen im Naturschutz. Naturschutz und Landschaftsplanung 34:37–44

    Google Scholar 

  • Juen A, Traugott M (2004) Spatial distribution of epigaeic predators in a small field in relation to season and surrounding crops. Agric Ecosyst Environ 103:613–620. doi:10.1016/j.agee.2003.10.017

    Article  Google Scholar 

  • Kahlenberg J (2004) Trockenstandorte auf Sand—Perspektiven für die Entwicklung auch kleinräumiger Strukturen. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 77–81

    Google Scholar 

  • Kaiser T (2004) Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandstandorte in Nordwestdeutschland—Operationalisierung der Forschungsergebnisse für die naturschutzfachliche Planung. NNA-Ber 17:213–221

    Google Scholar 

  • Kalfhues H (2005) Pflege- und Entwicklungsplan für das Naturschutzgebiet “Holtwicker Wacholderheide” (Kreis Recklinghausen) unter besonderer Berücksichtigung der Vegetation sowie der Habitate von Heidelerche und Zauneidechse. Diploma thesis, University of Münster

  • Kratochwil A (2004) Sand-Ökosysteme im Binnenland: Dynamik, Restitution und Beweidungsmanagement—das Beispiel: Emsland. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 13–21

    Google Scholar 

  • Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2007) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148. doi: 10.1000/s10531-007-9313-0, doi:10.1007/s10531-007-9313-0

    Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174. doi:10.1111/j.1365-2656.2008.01443.x

    Article  PubMed  Google Scholar 

  • Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637. doi:10.1016/j.biocon.2008.11.015

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Leyer I, Wesche K (2007) Multivariate Statistik in der Ökologie. Springer, Berlin, Heidelberg

    Google Scholar 

  • Maes D, Bonte D (2006) Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol Conserv 133:490–499

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

  • McKinney ML (1999) High rates of extinction and threat in poorly studied taxa. Conserv Biol 13:1273–1281. doi:10.1046/j.1523-1739.1999.97393.x

    Article  Google Scholar 

  • Merkens S (2002) Epigeic spider communities in inland dunes in the lowlands of Northern Germany. In: Toft S, Scharff N (eds) Proceedings of the 19th European colloquium of arachnology, Aarhus University Press, Arhus, pp 215–222

  • Merrett P (1976) Changes in the ground-living spider fauna after heathland fires in Dorset. Bull Br Arachnol Soc 3:214–221

    Google Scholar 

  • Meynen E, Schmithüsen J (eds) (1959) Handbuch der naturräumlichen Gliederung Deutschlands, 6. Lieferung. Veröffentlichungen der Bundesanstalt für Landeskunde und des Deutschen Instituts für Länderkunde, Remagen

  • Moretti M (2002) Effects of winter fire on spiders. In: Toft S, Scharff N (eds) Proceedings of the 19th European colloquium of arachnology, Aarhus University Press, Arhus, pp 183–190

  • Morris MG (2000) The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol Conserv 95:129–142. doi:10.1016/S0006-3207(00)00028-8

    Article  Google Scholar 

  • Muff P, Kropf C, Frick H, Nentwig W, Schmidt-Entling MH (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv Divers 2:36–44. doi:10.1111/j.1752-4598.2008.00037.x

    Article  Google Scholar 

  • Murl NRW (Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes NRW) (ed) (1989) Klima-Atlas von Nordrhein-Westfalen. Self-published, Düsseldorf

  • Myers N, Knoll AH (2001) The biotic crisis and the future of evolution. Proc Natl Acad Sci USA 98:5389–5392

    Article  PubMed  CAS  Google Scholar 

  • Negro M, Isaia M, Palestrini C, Rolando A (2009) The impact of forest ski-pistes on diversity of ground-dwelling arthropods and small mammals in the Alps. Biodivers Conserv. doi:10.1007/s10531-009-9608-4

  • New TR (1999a) Entomology and nature conservation. Eur J Entomol 96:11–17

    Google Scholar 

  • New TR (1999b) Untangling the web: spiders and the challenges of invertebrate conservation. J Insect Conserv 3:251–256. doi:10.1023/A:1009697104759

    Article  Google Scholar 

  • Norris KC (1999) Quantifying change through time in spider assemblages: sampling methods, indices and sources of error. J Insect Conserv 3:309–325. doi:10.1023/A:1009600813111

    Article  Google Scholar 

  • Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MH, Wagner H (2008) The vegan Package Version 1.15-0. http://vegan.r-forge.r-project.org. Accessed 10 December 2008

  • Pardey A (2004) Dünen und Sandlandschaften in Nordrhein-Westfalen unter besonderer Berücksichtigung der Situation in Westfalen. In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 3–11

    Google Scholar 

  • Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178. doi:10.1007/s004420100720

    Article  Google Scholar 

  • Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181. doi:10.1016/S0167-8809(03)00079-3

    Article  Google Scholar 

  • Petillon J, Ysnel F, Canard A, Lefeuvre JC (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biol Conserv 126:103–117. doi:10.1016/j.biocon.2005.05.003

    Article  Google Scholar 

  • Platnick NJ (2010) The world spider catalog, version 10.5. American museum of natural history. http://research.amnh.org/entomology/spiders/catalog/index.html. Accessed 01/04/2010

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219. doi:10.1038/35012221

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. Accessed 10 June 2009

  • Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Naturschutz und biologische Vielfalt 34:1–318

    Google Scholar 

  • Ripley B (2008) The VR package version 7.2-45. http://www.stats.ox.ac.uk/pub/MASS4. Accessed 10 December 2008

  • Roberts MJ (1987) The spiders of Great Britain and Ireland, Volume 2: Linyphiidae and Checklist. Harley Books, Essex

    Google Scholar 

  • Roberts MJ (1998) Spinnen Gids. Tirion, Baarn

    Google Scholar 

  • Romero GQ, Vasconcellos-Neto J (2005) The effects of plant structure on the spatial and microspatial distribution of a bromeliad-living jumping spider (Salticidae). J Anim Ecol 74:12–21. doi:10.1111/j.1365-2656.2004.00893.x

    Article  Google Scholar 

  • Sachs L, Hedderich J (2006) Angewandte Statistik. Springer, Berlin, Heidelberg

    Google Scholar 

  • Schmidt L, Melber A (2004) Einfluss des Habitatmanagements auf die Wirbellosenfauna in Sand- und Moorheiden Nordwestdeutschlands. NNA-Ber 17:145–164

    Google Scholar 

  • Schmidt MH, Rocker S, Hanafi J, Gigon A (2008) Rotational fallows as overwintering habitat for grassland arthropods: the case of spiders in fen meadows. Biodivers Conserv 17:3003–3012. doi:10.1007/s10531-008-9412-6

    Article  Google Scholar 

  • Schwabe A, Remy D, Assmann T, Kratochwil A, Mährlein A, Nobis M, Storm C, Zehm A, Schlemmer H, Seuss R, Bergmann S, Eichberg C, Menzel U, Persigehl M, Zimmermann K, Weinert M (2002) Inland sand ecosystems: dynamics and restitution as a consequence of the use of different grazing systems. In: Härdtle W (ed) Pasture Landscapes and Nature conservation. Springer, Berlin, Heidelberg, pp 239–252

    Google Scholar 

  • Scott AG, Oxford G, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value for peat. Biol Conserv 127:420–428

    Article  Google Scholar 

  • Shen TJ, Chao A, Lin CF (2003) Predicting the number of new species in further taxonomic sampling. Ecology 84:798–804. doi:10.1890/0012-9658(2003)084[0798:PTNONS]2.0.CO;2

    Article  Google Scholar 

  • Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161. doi:10.1146/annurev.ento.51.110104.151036

    Article  PubMed  CAS  Google Scholar 

  • Steven M (2004) Anforderungen an den Naturschutz in Flugsandgebieten Westfalens aus Sicht des Naturschutzbundes (NABU). In: Verein WestfälischerNaturwissenschaftlicher (ed) Dünen und trockene Sandlandschaften—Gefährdung und Schutz. Verlag Wolf & Kreuels, Bösensell, pp 83–91

    Google Scholar 

  • Sundermeier A (1998a) Methoden zur Ermittlung der Vegetationsdeckung. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt, Wien, pp 102–122

    Google Scholar 

  • Sundermeier A (1998b) Methoden zur Analyse der Vegetationsstruktur. In: Traxler A (ed) Handbuch des vegetationsökologischen Monitorings. Teil A: Methoden. Umweltbundesamt, Wien, pp 123–158

    Google Scholar 

  • Verbücheln G, Jöbges M (2000) Verbreitung und aktueller Zustand der Heiden, Sandtrockenrasen und Borstgrasrasen in Nordrhein-Westfalens. NUA-Hefte 6:6–23

    Google Scholar 

  • Warui CM, Villet MR, Young TP, Jocque R (2005) Influence of grazing by large mammals on the spider community of a Kenyan savanna biome. J Arachnol 33:269–279

    Article  Google Scholar 

  • Webb NR, Hopkins PJ (1984) Invertebrate diversity on fragmented Calluna heathland. J Appl Ecol 21:921–933

    Article  Google Scholar 

  • Wheater CP, Cullen WR, Bell JR (2000) Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landscape Ecol 15:401–406. doi:10.1023/A:1008171023039

    Article  Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit JW, Beyschlag W (eds) Progess in botany 62. Springer, Heidelberg, pp 399–449

    Google Scholar 

  • Wiesbauer H, Mazzucco K (1997) Dünen in Niederösterreich. Ökologie und Kulturgeschichte eines bemerkenswerten Landschaftselement. Fachberichte NÖ Landschaftsfonds 6:1–90

    Google Scholar 

  • Wilmanns O (1997) Zur Geschichte der mitteleuropäischen Trockenrasen seit dem Spätglazial - Methoden, Tatsachen, Hypothesen. Phytocoenologia 27:213–233

    Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Woodcock BA, Pywell RF (2009) Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers Conserv 19:81–95. doi:10.1007/s10531-009-9703-6

    Article  Google Scholar 

  • Woodcock BA, Pywell R, Roy DB, Rose RJ, Bell D (2005) Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol Conserv 125:192–202. doi:10.1016/j.biocon.2005.03.017

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin, Heidelberg

    Book  Google Scholar 

Download references

Acknowledgements

I would like to thank the district administration (Untere Landschaftsbehörde) of Borken, Coesfeld, Gütersloh, Paderborn, Recklinghausen, Steinfurt and Warendorf for enabling field work. I also wish to express my gratitude to A. Beulting, K. Hannig, K. Mantel, M. Olthoff, N. Ribbrock, H. Terlutter and C. Venne for information on study areas and M. Breuer for assistance during field work. Furthermore, I am thankful to S. Hsieh, J. Schirmel and two anonymous reviewers for valuable comments on the manuscript and to R. Baumgartner for linguistic revision of the text. My work was funded by a scholarship of the Friedrich-Ebert-Foundation (Friedrich-Ebert-Stiftung, FES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Buchholz.

Appendix 1

Appendix 1

See Table 4.

Table 4 Species list (nomenclature follows Platnick 2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, S. Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19, 2565–2595 (2010). https://doi.org/10.1007/s10531-010-9860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9860-7

Keywords

Navigation